亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding

偏最小二乘回归 线性判别分析 主成分分析 代谢组学 多元统计 人工智能 机器学习 支持向量机 数据挖掘 校准 统计 计算机科学 模式识别(心理学) 化学 数学 色谱法
作者
Piotr S. Gromski,Howbeer Muhamadali,David I. Ellis,Yun Xu,Elon Correa,Michael L. Turner,Royston Goodacre
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:879: 10-23 被引量:755
标识
DOI:10.1016/j.aca.2015.02.012
摘要

The predominance of partial least squares-discriminant analysis (PLS-DA) used to analyze metabolomics datasets (indeed, it is the most well-known tool to perform classification and regression in metabolomics), can be said to have led to the point that not all researchers are fully aware of alternative multivariate classification algorithms. This may in part be due to the widespread availability of PLS-DA in most of the well-known statistical software packages, where its implementation is very easy if the default settings are used. In addition, one of the perceived advantages of PLS-DA is that it has the ability to analyze highly collinear and noisy data. Furthermore, the calibration model is known to provide a variety of useful statistics, such as prediction accuracy as well as scores and loadings plots. However, this method may provide misleading results, largely due to a lack of suitable statistical validation, when used by non-experts who are not aware of its potential limitations when used in conjunction with metabolomics. This tutorial review aims to provide an introductory overview to several straightforward statistical methods such as principal component-discriminant function analysis (PC-DFA), support vector machines (SVM) and random forests (RF), which could very easily be used either to augment PLS or as alternative supervised learning methods to PLS-DA. These methods can be said to be particularly appropriate for the analysis of large, highly-complex data sets which are common output(s) in metabolomics studies where the numbers of variables often far exceed the number of samples. In addition, these alternative techniques may be useful tools for generating parsimonious models through feature selection and data reduction, as well as providing more propitious results. We sincerely hope that the general reader is left with little doubt that there are several promising and readily available alternatives to PLS-DA, to analyze large and highly complex data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助Lee采纳,获得10
6秒前
39秒前
39秒前
自行车完成签到,获得积分10
44秒前
zhj完成签到,获得积分20
48秒前
ylky完成签到 ,获得积分10
2分钟前
2分钟前
聂白晴发布了新的文献求助10
2分钟前
W29完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Cosmosurfer完成签到,获得积分10
3分钟前
小程同学发布了新的文献求助10
3分钟前
Lee发布了新的文献求助10
3分钟前
传奇3应助马帅帅采纳,获得10
3分钟前
Lee完成签到,获得积分10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
huanger完成签到,获得积分10
3分钟前
聂白晴完成签到,获得积分10
3分钟前
科研通AI5应助聂白晴采纳,获得10
3分钟前
大渣饼完成签到 ,获得积分10
4分钟前
酸辣完成签到 ,获得积分10
4分钟前
4分钟前
Estrange发布了新的文献求助10
4分钟前
5分钟前
Estrange完成签到,获得积分20
5分钟前
我是老大应助lalalatiancai采纳,获得10
5分钟前
5分钟前
mingjie发布了新的文献求助10
5分钟前
凯凯完成签到 ,获得积分10
5分钟前
chaotianjiao完成签到 ,获得积分10
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
mingjie发布了新的文献求助10
5分钟前
lalalatiancai发布了新的文献求助10
5分钟前
个性归尘给干之桃的求助进行了留言
6分钟前
lyq发布了新的文献求助10
6分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369573
关于积分的说明 10456499
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251