索拉非尼
MAPK/ERK通路
癌症研究
PI3K/AKT/mTOR通路
蛋白激酶B
化学
车站3
磷酸化
激酶
脱磷
信号转导
LY294002型
生物
肝细胞癌
生物化学
磷酸酶
标识
DOI:10.3748/wjg.v17.i34.3922
摘要
To investigate the inhibitory role and the underlying mechanisms of sorafenib on signal transducer and activator of transcription 3 (STAT3) activity in hepatocellular carcinoma (HCC).Human and rat HCC cell lines were treated with sorafenib. Proliferation and STAT3 dephosphorylation were assessed. Potential molecular mechanisms of STAT3 pathway inhibition by sorafenib were evaluated. In vivo antitumor action and STAT3 inhibition were investigated in an immunocompetent orthotopic rat HCC model.Sorafenib decreased STAT3 phosphorylation at the tyrosine and serine residues (Y705 and S727), but did not affect Janus kinase 2 (JAK2) and phospha-tase shatterproof 2 (SHP2), which is associated with growth inhibition in HCC cells. Dephosphorylation of S727 was associated with attenuated extracellular signal-regulated kinase (ERK) phosphorylation, similar to the effects of a mitogen-activated protein kinase (MEK) inhibitor U0126, suggesting that sorafenib induced S727 dephosphorylation by inhibiting MEK/ERK signaling. Meanwhile, sorafenib could also inhibit Akt phosphorylation, and both the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and Akt knockdown resulted in Y705 dephosphorylation, indicating that Y705 dephosphorylation by sorafenib was mediated by inhibiting the PI3K/Akt pathway. Finally, in the rat HCC model, sorafenib significantly inhibited STAT3 activity, reducing tumor growth and metastasis.Sorafenib inhibits growth and metastasis of HCC in part by blocking the MEK/ERK/STAT3 and PI3K/Akt/STAT3 signaling pathways, but independent of JAK2 and SHP2 activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI