计算机科学
个性化
学习对象
推荐系统
学习管理
学习风格
个性化学习
多媒体
对象(语法)
同步学习
质量(理念)
人工智能
万维网
教学方法
开放式学习
合作学习
数学教育
心理学
认识论
哲学
作者
Hazra Imran,Mohammad Belghis-Zadeh,Ting‐Wen Chang,Kinshuk Kinshuk,Sabine Graf
标识
DOI:10.1007/s40595-015-0049-6
摘要
Learning management systems (LMS) are typically used by large educational institutions and focus on supporting instructors in managing and administrating online courses. However, such LMS typically use a "one size fits all" approach without considering individual learner's profile. A learner's profile can, for example, consists of his/her learning styles, goals, prior knowledge, abilities, and interests. Generally, LMSs do not cater individual learners' needs based on their profile. However, considering learners' profiles can help in enhancing the learning experiences and performance of learners within the course. To support personalization in LMS, recommender systems can be used to recommend appropriate learning objects to learners to increase their learning. In this paper, we introduce the personalized learning object recommender system. The proposed system supports learners by providing them recommendations about which learning objects within the course are more useful for them, considering the learning object they are visiting as well as the learning objects visited by other learners with similar profiles. This kind of personalization can help in improving the overall quality of learning by providing recommendations of learning objects that are useful but were overlooked or intentionally skipped by learners. Such recommendations can increase learners' performance and satisfaction during the course.
科研通智能强力驱动
Strongly Powered by AbleSci AI