随机性
随机数生成
计算机科学
NIST公司
熵(时间箭头)
概率逻辑
直方图
人工智能
图像(数学)
材料科学
随机存取
三元运算
图像处理
高斯分布
理论计算机科学
算法
二进制数
发电机(电路理论)
计算机视觉
统计物理学
模式识别(心理学)
利用
机器视觉
量子点
随机过程
随机序列
冯·诺依曼熵
作者
Juhyung Seo,Seungme Kang,Chaehyun Kim,Jongho Kim,Youngwoo Yoo,Yeong Kwon Kim,Yeong Kwon Kim,Wonjun Shin,Byung Chul Jang,Young‐Joon Kim,Young‐Joon Kim,Hocheon Yoo
标识
DOI:10.1002/adma.202516947
摘要
ABSTRACT We present a photospike‐based true random number generator (PS‐TRNG) that exploits the intrinsic randomness from light–matter interaction and stochastic charge trapping. By integrating copper vanadate (CuV 2 O 6 ) nanostructures with a tin dioxide quantum dot (SnO 2 QD) layer, the device induces probabilistic trapping–de‐trapping dynamics, producing random photospike currents under optical pulse trains. The spike currents show high entropy and enable multi‐level random number generation beyond binary, providing ternary outputs with near‐ideal statistics (33.30% uniformity, 33.28% inter‐Hamming distance) and full success in all 15 NIST tests. We further develop an image authenticity verification system by integrating the PS‐TRNG with a mobile platform and custom‐designed circuit board, enabling hardware‐based detection of unauthorized image modifications. The random numbers are embedded as a hidden layer within the image data without degrading visual quality, enabling detection of unauthorized modifications. The system can successfully identify image modifications, even those involving highly sophisticated manipulations generated by artificial intelligence (AI)‐based image editing tools. The device maintains stable operation over 2 million cycles and remains reliable even after more than 460 days, demonstrating its long‐term stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI