人工智能
计算机视觉
计算机科学
光度立体
校准
一般化
帧速率
帧(网络)
三维重建
立体显示器
迭代重建
图像分辨率
立体视觉
立体成像
分辨率(逻辑)
图像形成
双眼视差
立体视
三维建模
代表(政治)
计算机图形学(图像)
对应问题
图像(数学)
立体摄像机
观点
高分辨率
摄像机切除
计算机立体视觉
单眼
作者
Zhang Chong-yang,Wu Guohang,Guo Jun-feng,Zeng, Hongran,Liu Shou-xin,Liu, Yi-Guang,Li, Xiaowei
标识
DOI:10.6084/m9.figshare.c.8011027.v2
摘要
Real-time 3D single-pixel imaging (SPI) is challenging due to the requirement of complex calibration and the inherent tradeoff between resolution and the number of measurements. In this work, we propose a calibration-free framework that integrates binocular single-pixel imaging with a super-resolution photometric stereo network (SRPS-Net) to achieve real-time 3D SPI video. Photometric images reconstructed from arbitrary left and right viewpoints are processed by SRPS-Net to recover accurate surface normals without calibration. Experimental results show that our system achieves real-time 3D reconstruction at a resolution of 128×128 with a frame rate of 6.5 fps, reaching pixel-level accuracy. The proposed method demonstrates robust generalization to complex objects and gestures, providing a compact, cost-effective, and calibration-free solution for real-time 3D single-pixel imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI