Predicting Anterior Cruciate Ligament Reconstruction Revision Risk

前交叉韧带 比例危险模型 Lasso(编程语言) 回归分析 回归 骨关节炎 逐步回归 前交叉韧带重建术 线性回归 医学 计算机科学 物理疗法 外科 机器学习 内科学 统计 替代医学 数学 病理 万维网
作者
James A. Anderson,Mikko S. Venäläinen,Martin Lind,Craig Engstrom
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:107 (19): 2170-2177 被引量:1
标识
DOI:10.2106/jbjs.24.00821
摘要

Background: Predicting anterior cruciate ligament reconstruction (ACLR) revision risk using machine learning (ML) regression analyses of large-scale registry data offers an evidence-based approach for clinical decision-making and management at a patient-specific level. We examined the performance of an enhanced ML-Cox regression analysis of the Danish Knee Ligament Reconstruction Registry (DKRR) for predicting ACLR revision risk. Methods: We analyzed surgical and patient-reported outcome measure data from 18,753 patients in the DKRR who underwent primary ACLR between 2005 and 2023. Enhanced ML-Cox regression analyses, using the least absolute shrinkage and selection operator (LASSO) and stable iterative variable selection (SIVS) approaches, were applied to predict the risk of ACLR revision (i.e., the risk of repeat surgery to reconstruct the ACL). The SIVS procedure identified key variables, including age at the time of primary ACLR and several Knee injury and Osteoarthritis Outcome Score (KOOS) items from 12-month follow-up surveys, as inputs for the best-performing regression models for predicting ACLR revision risk. The resultant Cox regression models for the prediction of ACLR revision risk, therefore, did not involve an analysis of patients with incomplete 12-month follow-up survey data, including patients with graft ruptures within 12 months after the primary surgery. Results: The best-performing Cox regression model for predicting ACLR revision risk incorporated age at the time of primary ACLR and 3 KOOS items (Pain P1 and Quality of Life Q2 and Q3) from the 12-month postoperative follow-up assessment. This model demonstrated good prediction accuracy 1, 2, and 5 years after the 12-month follow-up assessment (C-index [and standard error], 0.73 [0.03], 0.73 [0.02], and 0.74 [0.02], respectively). This 4-variable Cox regression model was well-calibrated across these time points. An online clinical point-of-care tool, the Danish KOOS 3 Risk Monitoring Tool (DK 3 ), was developed for predicting ACLR revision risk. Conclusions: Enhanced ML-Cox regression, incorporating patient age and 3 KOOS items obtained 12 months postoperatively, provided good prediction accuracy for ACLR revision risk from 1 to 5 years after the 12-month follow-up assessment, a period that has been associated with the vast majority of ACLR revisions. The newly developed DK 3 point-of-care tool offers a direct-input method to predict and monitor the risk of ACLR revision. Level of Evidence: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助ayayaya采纳,获得10
2秒前
小蘑菇应助斩颓采纳,获得10
2秒前
2秒前
共享精神应助幽默的乐安采纳,获得10
3秒前
swslgd完成签到 ,获得积分10
4秒前
4秒前
6秒前
SC234发布了新的文献求助10
7秒前
刘晓玄发布了新的文献求助10
8秒前
qii发布了新的文献求助10
8秒前
Ava应助DamenS采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
研友_VZG7GZ应助耶啵采纳,获得10
11秒前
11秒前
kid1912完成签到,获得积分0
11秒前
星星发布了新的文献求助10
11秒前
dreamlike完成签到,获得积分10
12秒前
任梓宁完成签到 ,获得积分10
12秒前
13秒前
14秒前
斯文败类应助hugh采纳,获得10
14秒前
14秒前
tang发布了新的文献求助10
14秒前
烟花应助Dr_ZHONG采纳,获得10
15秒前
哆面体完成签到,获得积分10
15秒前
CipherSage应助YEGE采纳,获得10
15秒前
ding应助刘晓玄采纳,获得10
15秒前
15秒前
16秒前
NexusExplorer应助林以诺采纳,获得10
16秒前
123完成签到,获得积分10
16秒前
16秒前
17秒前
黄连完成签到 ,获得积分10
17秒前
mm发布了新的文献求助10
17秒前
帕荣荣发布了新的文献求助10
17秒前
Mong那粒沙完成签到,获得积分10
18秒前
vungocbinh完成签到,获得积分10
18秒前
lmz完成签到,获得积分10
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621767
求助须知:如何正确求助?哪些是违规求助? 4706545
关于积分的说明 14936730
捐赠科研通 4766774
什么是DOI,文献DOI怎么找? 2551849
邀请新用户注册赠送积分活动 1514185
关于科研通互助平台的介绍 1474885