Enhancement of long-term memory of IGZO synaptic transistors by the introduction of an Al2O3 charge trapping layer

俘获 晶体管 图层(电子) 材料科学 光电子学 电荷(物理) 期限(时间) 纳米技术 电气工程 物理 电压 工程类 生态学 量子力学 生物
作者
Yuhui Wang,Guangtan Miao,Zezhong Yin,Ranran Ci,Guoxia Liu,Fukai Shan
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:127 (1) 被引量:1
标识
DOI:10.1063/5.0282482
摘要

Brain-inspired neuromorphic computing has been widely considered a promising solution to overcome the limitations of traditional von Neumann architecture in the current computer system. As an essential component of the neuromorphic system, the artificial synaptic device exhibits great potential in adaptive learning. Due to their controllable channel conductance and CMOS compatibility, solid electrolyte-gated synaptic transistors (EGSTs) have garnered significant interest as next-generation neuromorphic devices. However, most of the existing EGSTs suffer from rapid self-diffusion of the ions, making it difficult to maintain the stable channel conductance states. In this work, the synaptic transistors were fabricated with indium–gallium–zinc oxide as the channel layer, Al2O3 as the charge trapping layer, and ZrO2 as the solid electrolyte layer. The self-diffusion of the hydrogen ions can be suppressed by the positive charges trapped in the Al2O3 layer, which significantly improves the long-term plasticity (LTP) of the devices. By adjusting the presynaptic spike scheme, the typical synaptic behaviors, including excitatory postsynaptic current, paired-pulse facilitation, and the transition from short-term memory to long-term memory, were simulated. Based on the conductance modulation properties of the channel in the synaptic transistor, an artificial neural network was constructed for pattern recognition, and a high accuracy of 95.4% was obtained. This work demonstrates an effective strategy for the enhancement of the LTP of the synaptic transistor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后乘风完成签到 ,获得积分10
刚刚
我是老大应助阿士大夫采纳,获得10
1秒前
拓展完成签到 ,获得积分10
3秒前
3秒前
gavin完成签到,获得积分10
4秒前
2041完成签到,获得积分10
7秒前
传奇3应助动听黎云采纳,获得10
9秒前
10秒前
喔喔发布了新的文献求助10
10秒前
迷人的大地完成签到,获得积分10
11秒前
Groot完成签到,获得积分10
12秒前
12秒前
liuwei完成签到,获得积分10
13秒前
zc完成签到,获得积分10
13秒前
14秒前
14秒前
深情安青应助纪你巴采纳,获得10
15秒前
15秒前
我是老大应助清脆靳采纳,获得30
17秒前
浮游应助不难不难采纳,获得10
18秒前
18秒前
yst123发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
浮游应助文艺不凡采纳,获得10
20秒前
LIAN发布了新的文献求助10
24秒前
25秒前
小小小发布了新的文献求助10
25秒前
Owen应助123采纳,获得30
26秒前
圣泽同学完成签到,获得积分10
26秒前
浮游应助月初采纳,获得10
27秒前
27秒前
yst123完成签到,获得积分20
28秒前
29秒前
ly完成签到,获得积分10
29秒前
竹子完成签到,获得积分10
30秒前
非雨非晴完成签到,获得积分10
30秒前
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564269
求助须知:如何正确求助?哪些是违规求助? 4649013
关于积分的说明 14687616
捐赠科研通 4590902
什么是DOI,文献DOI怎么找? 2518973
邀请新用户注册赠送积分活动 1491567
关于科研通互助平台的介绍 1462616