Conv1D-GRU-Self Attention: An Efficient Deep Learning Framework for Detecting Intrusions in Wireless Sensor Networks

计算机科学 无线传感器网络 深度学习 人工智能 无线 计算机网络 电信
作者
Kenan Honore Robacky Mbongo,Kanwal Ahmed,Оrken Mamyrbayev,Guanghui Wang,Fang Zuo,Ainur Аkhmediyarova,Нуржан Мукажанов,Assem Ayapbergenova
出处
期刊:Future Internet [MDPI AG]
卷期号:17 (7): 301-301 被引量:2
标识
DOI:10.3390/fi17070301
摘要

Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and evaluate a deep learning-based Intrusion Detection System (IDS) that is both accurate and efficient for real-time threat detection in WSNs. This study proposes a hybrid IDS model combining one-dimensional Convolutional Neural Networks (Conv1Ds), Gated Recurrent Units (GRUs), and Self-Attention mechanisms. A Conv1D extracts spatial features from network traffic, GRU captures temporal dependencies, and Self-Attention emphasizes critical sequence components, collectively enhancing detection of subtle and complex intrusion patterns. The model was evaluated using the WSN-DS dataset and demonstrated superior performance compared to traditional machine learning and simpler deep learning models. It achieved an accuracy of 98.6%, precision of 98.63%, recall of 98.6%, F1-score of 98.6%, and an ROC-AUC of 0.9994, indicating strong predictive capability even with imbalanced data. In addition to centralized training, the model was tested under cooperative, node-based learning conditions, where each node independently detects anomalies and contributes to a collective decision-making framework. This distributed approach improves detection efficiency and robustness. The proposed IDS offers a scalable and resilient solution tailored to the unique challenges of WSN security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子发布了新的文献求助10
刚刚
zhw发布了新的文献求助10
刚刚
DD完成签到,获得积分10
1秒前
科研通AI6.1应助QUAV采纳,获得10
1秒前
充电宝应助小米采纳,获得10
1秒前
香蕉觅云应助哭热采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
001完成签到,获得积分10
2秒前
充电宝应助yyyxxx采纳,获得10
2秒前
Ettrickfield完成签到,获得积分10
2秒前
3秒前
3秒前
66666发布了新的文献求助10
4秒前
在努力一点点完成签到,获得积分20
4秒前
淡定的如风完成签到,获得积分10
4秒前
xinxin发布了新的文献求助10
4秒前
5秒前
5秒前
共享精神应助沉默红牛采纳,获得10
5秒前
缓慢太君完成签到,获得积分20
5秒前
专注的问寒应助栗栗采纳,获得50
5秒前
zhw完成签到,获得积分10
6秒前
7秒前
所所应助岁月静好采纳,获得10
7秒前
堂yt完成签到,获得积分10
7秒前
杜阿妹完成签到,获得积分10
8秒前
香蕉雨安发布了新的文献求助10
8秒前
8秒前
8秒前
机智翠风发布了新的文献求助10
8秒前
Akim应助小伙子采纳,获得10
9秒前
Ettrickfield发布了新的文献求助50
9秒前
天真烨伟发布了新的文献求助10
9秒前
him12完成签到,获得积分10
9秒前
阿may完成签到,获得积分10
9秒前
阳光彩虹小白马完成签到 ,获得积分10
9秒前
谢书南完成签到,获得积分10
10秒前
10秒前
safari完成签到 ,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768107
求助须知:如何正确求助?哪些是违规求助? 5573694
关于积分的说明 15417179
捐赠科研通 4901926
什么是DOI,文献DOI怎么找? 2637496
邀请新用户注册赠送积分活动 1585424
关于科研通互助平台的介绍 1540665