化学
多糖
木耳
单糖
侧链
立体化学
蘑菇
糖
化学结构
食品科学
有机化学
聚合物
作者
Jun Liang,Zihao Rao,Si-Liang Jiang,Shu Wang,Haixue Kuang,Yong‐Gang Xia
标识
DOI:10.1016/j.carbpol.2023.120968
摘要
An unprecedent glucuronoxylogalactoglucomannan (GXG'G″M), ME-2 (Mw, 2.60 × 105 g/mol; O-acetyl % = 16.7 %), was isolated and purified from water extracts of Auricularia auricula-judae (black woody ear). Firstly, due to much higher O-acetyl contents, we prepared its fully deacetylated products (dME-2; Mw, 2.13 × 105 g/mol) for convenient structure survey. The repeating structure-unit of dME-2 was readily proposed based on Mw determination, monosaccharide compositions, methylation analysis, free-radical degradation and 1/2D NMR spectroscopy. The dME-2 was identified as a highly branched polysaccharide with an average of 10 branches per 10 sugar backbone units. The backbone was only repeating →3)-α-Manp-(1→ residues, substituted at the C-2, C-6 and C-2,6 positions. The side chains included β-GlcAp-(1→, β-Xylp-(1→, α-Manp-(1→, α-Galp-(1→ and β-Glcp-(1→. Secondly, the complex substituted positions of O-acetyl groups in ME-2 were determined to be at C-2, C-4, C-6 and C-4,6 in the backbone and at C-2 and C-2,3 in some side chains. Finally, the anti-inflammatory activity of ME-2 was preliminarily explored on LPS-stimulated THP-1 cells. The above date not only provided the first example for structural studies of GXG'G″M type polysaccharides, but also facilitated development and application of black woody ear polysaccharides as medicinal agents or functional dietary supplements.
科研通智能强力驱动
Strongly Powered by AbleSci AI