Coherent Visual Storytelling via Parallel Top-Down Visual and Topic Attention

计算机科学 段落 隐藏字幕 短语 发电机(电路理论) 人工智能 视觉搜索 判决 讲故事 自然语言处理 情报检索 叙述的 图像(数学) 语言学 功率(物理) 物理 哲学 量子力学 万维网
作者
Jinjing Gu,Hanli Wang,Ruichao Fan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (1): 257-268 被引量:5
标识
DOI:10.1109/tcsvt.2022.3199603
摘要

Visual storytelling aims at producing a narrative paragraph for a given photo album automatically. It introduces more new challenges than individual image paragraph descriptions, mainly due to the difficulty in preserving coherent topics and in generating diverse phrases to depict the rich content of a photo album. Existing attention-based models that lack higher-level guiding information always result in a deviation between the generated sentence and the topic expressed by the image. In addition, these widely applied language generation approaches employing standard beam search tend to produce monotonous descriptions. In this work, a coherent visual storytelling (CoVS) framework is designed to address the above-mentioned problems. Specifically, in the encoding phase, an image sequence encoder is designed to efficiently extract visual features of the input photo album. Then, the novel parallel top-down visual and topic attention (PTDVTA) decoder is constructed via a topic-aware neural network, a parallel top-down attention model, and a coherent language generator. Concretely, visual attention focuses on the attributes and the relationships of the objects, while topic attention integrating a topic-aware neural network could improve the coherence of generated sentences. Eventually, a phrase beam search algorithm with $n$ -gram hamming diversity is further designed to optimize the expression diversity of the generated story. To justify the proposed CoVS framework, extensive experiments are conducted on the VIST dataset, which shows that CoVS can automatically generate coherent and diverse stories in a more natural way. Moreover, CoVS obtains better performance than state-of-the-art baselines on BLEU-4 and METEOR scores, while maintaining good CIDEr and ROUGH_L scores. The source code of this work can be found in https://mic.tongji.edu.cn .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
冰淇淋啦啦啦完成签到,获得积分20
3秒前
奇异物质发布了新的文献求助10
5秒前
5秒前
Sara完成签到,获得积分10
5秒前
iNk应助prof.zhang采纳,获得10
6秒前
HonS完成签到,获得积分10
6秒前
FashionBoy应助Fiona采纳,获得10
8秒前
8秒前
11完成签到,获得积分10
10秒前
奇异物质完成签到,获得积分20
10秒前
111完成签到,获得积分20
10秒前
10秒前
11发布了新的文献求助10
12秒前
三幅画发布了新的文献求助10
12秒前
手抓饼啊发布了新的文献求助30
14秒前
15秒前
16秒前
17秒前
17秒前
Rain发布了新的文献求助10
18秒前
畅快的觅风完成签到,获得积分10
18秒前
不倦应助乔心采纳,获得10
18秒前
蓝草发布了新的文献求助10
20秒前
粗暴的醉卉完成签到,获得积分10
22秒前
111发布了新的文献求助10
23秒前
七七八八发布了新的文献求助10
23秒前
不倦应助漂亮幻莲采纳,获得10
25秒前
要减肥的涑完成签到,获得积分20
25秒前
827584450完成签到,获得积分10
28秒前
29秒前
传奇3应助废物自救采纳,获得10
29秒前
无限亦云完成签到,获得积分20
30秒前
不倦应助Fiona采纳,获得10
30秒前
lyon完成签到,获得积分10
32秒前
yue发布了新的文献求助10
34秒前
38秒前
现代匪完成签到,获得积分10
38秒前
酷波er应助Rain采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780355
求助须知:如何正确求助?哪些是违规求助? 3325680
关于积分的说明 10223949
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669024
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648