A merged molecular representation deep learning method for blood–brain barrier permeability prediction

深度学习 计算机科学 人工智能 血脑屏障 代表(政治) 磁导率 神经科学 化学 中枢神经系统 政治 法学 政治学 生物化学 生物
作者
Qiang Tang,Fulei Nie,Qi Zhao,Wei Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:43
标识
DOI:10.1093/bib/bbac357
摘要

Abstract The ability of a compound to permeate across the blood–brain barrier (BBB) is a significant factor for central nervous system drug development. Thus, for speeding up the drug discovery process, it is crucial to perform high-throughput screenings to predict the BBB permeability of the candidate compounds. Although experimental methods are capable of determining BBB permeability, they are still cost-ineffective and time-consuming. To complement the shortcomings of existing methods, we present a deep learning–based multi-model framework model, called Deep-B3, to predict the BBB permeability of candidate compounds. In Deep-B3, the samples are encoded in three kinds of features, namely molecular descriptors and fingerprints, molecular graph and simplified molecular input line entry system (SMILES) text notation. The pre-trained models were built to extract latent features from the molecular graph and SMILES. These features depicted the compounds in terms of tabular data, image and text, respectively. The validation results yielded from the independent dataset demonstrated that the performance of Deep-B3 is superior to that of the state-of-the-art models. Hence, Deep-B3 holds the potential to become a useful tool for drug development. A freely available online web-server for Deep-B3 was established at http://cbcb.cdutcm.edu.cn/deepb3/, and the source code and dataset of Deep-B3 are available at https://github.com/GreatChenLab/Deep-B3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斑马发布了新的文献求助10
1秒前
小咩完成签到 ,获得积分10
3秒前
小菜鸡完成签到,获得积分10
4秒前
苦无完成签到,获得积分10
4秒前
华仔应助帅气冰菱采纳,获得10
4秒前
水门发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
8秒前
打打应助白踏歌采纳,获得20
8秒前
lucastse完成签到,获得积分10
9秒前
ee关闭了ee文献求助
10秒前
11秒前
知12发布了新的文献求助10
13秒前
13秒前
14秒前
帅气冰菱发布了新的文献求助10
15秒前
健忘过客完成签到,获得积分10
16秒前
17秒前
李健应助百里健柏采纳,获得10
17秒前
育种小杰发布了新的文献求助10
17秒前
夕诙发布了新的文献求助30
17秒前
18秒前
黄东胜发布了新的文献求助10
20秒前
lzy发布了新的文献求助10
20秒前
科研通AI5应助Vinca采纳,获得10
20秒前
彭于晏应助Lily采纳,获得10
20秒前
归去来兮发布了新的文献求助10
21秒前
22秒前
22秒前
烟花应助hashtag采纳,获得10
23秒前
Victooorrr完成签到,获得积分10
23秒前
健忘过客发布了新的文献求助10
24秒前
jxw完成签到,获得积分10
24秒前
25秒前
简单发布了新的文献求助10
25秒前
Owen应助动听友琴采纳,获得10
25秒前
育种小杰完成签到,获得积分20
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818341
求助须知:如何正确求助?哪些是违规求助? 3361488
关于积分的说明 10413002
捐赠科研通 3079720
什么是DOI,文献DOI怎么找? 1692197
邀请新用户注册赠送积分活动 814524
科研通“疑难数据库(出版商)”最低求助积分说明 768189