Using Machine Learning to Expedite the Screening of Environmental Factors Associated with the Risk of Spontaneous Preterm Birth: From Exposure Mixtures to Key Molecular Events

逻辑回归 随机森林 脂类学 梯度升压 风险评估 生物 生物信息学 计算机科学 机器学习 计算机安全
作者
Yanqiu Feng,Shu Su,Weinan Lin,Mengyuan Ren,Ning Gao,Bo Pan,Le Zhang,Lei Jin,Yali Zhang,Zhiwen Li,Rongwei Ye,Aiguo Ren,Bin Wang
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:10 (11): 1036-1044 被引量:3
标识
DOI:10.1021/acs.estlett.3c00085
摘要

Spontaneous preterm birth (SPB) is affected by various environmental exposures. However, there is still an urgent need to efficiently integrate exposomic information to build its prediction model and unveil the potential toxic pathways. Here, we conducted a nested case-control study by recruiting 30 women with SPB delivery (cases) and 30 women without (controls) at their early pregnancy. We analyzed various biomarkers of external chemical exposure, lipidomics, and immunity, resulting in 1081 exposure features. A logistic regression model (LR) was used to screen potential risk factors, and four statistical learners were used to establish SPB prediction models. Overall, the serum lipid concentration in cases was higher than in controls, while this was not the case for chemical and immune biomarkers. Random forest (RF) and extreme gradient boosting (XGboost) models had a relatively higher prediction accuracy of > 90%. Glycerophospholipids (GP) were the most abundant lipidomic features screened by LR, RF, and XGboost models, followed by glycerolipids and sphingolipids, shown as well as by enrichment analysis. Moreover, FA(21:0) had the largest contribution to the prediction performance. Maternal exposure to various elements can contribute to SPB risk due to their interaction with GP metabolism. Therefore, it is promising to use exposomic data to predict SPB risk and screen key molecular events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助zheyin采纳,获得10
刚刚
小小莫发布了新的文献求助10
1秒前
眯眯眼的冷珍完成签到,获得积分10
2秒前
摸鱼的螺关注了科研通微信公众号
4秒前
5秒前
艾登登完成签到,获得积分10
5秒前
大外科小伊森完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
LioXH完成签到,获得积分10
9秒前
9秒前
看不懂完成签到 ,获得积分10
9秒前
10秒前
Zz发布了新的文献求助20
10秒前
10秒前
zheyin完成签到,获得积分20
11秒前
EMMA发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
mimi完成签到,获得积分10
12秒前
彭于晏应助GG采纳,获得10
13秒前
13秒前
略略略发布了新的文献求助10
13秒前
科研助手6应助陈晨采纳,获得10
13秒前
Tracy完成签到,获得积分10
13秒前
大模型应助单薄小蜜蜂采纳,获得10
13秒前
14秒前
super发布了新的文献求助10
14秒前
14秒前
14秒前
文静的雪冥完成签到 ,获得积分10
15秒前
sunshine应助gy采纳,获得10
16秒前
16秒前
QQQ完成签到,获得积分20
16秒前
16秒前
17秒前
17秒前
脆脆鲨完成签到,获得积分10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813009
求助须知:如何正确求助?哪些是违规求助? 3357442
关于积分的说明 10386778
捐赠科研通 3074631
什么是DOI,文献DOI怎么找? 1688970
邀请新用户注册赠送积分活动 812423
科研通“疑难数据库(出版商)”最低求助积分说明 767110