Artificial Intelligence-Based Smart Quality Inspection for Manufacturing

目视检查 过程(计算) 质量(理念) 卷积神经网络 计算机科学 自动光学检测 产品(数学) 人工智能 机器视觉 工程类 制造业 制造工程 操作系统 哲学 认识论 数学 政治学 法学 几何学
作者
Sarvesh Sundaram,Abe Zeid
出处
期刊:Micromachines [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 570-570 被引量:95
标识
DOI:10.3390/mi14030570
摘要

In today’s era, monitoring the health of the manufacturing environment has become essential in order to prevent unforeseen repairs, shutdowns, and to be able to detect defective products that could incur big losses. Data-driven techniques and advancements in sensor technology with Internet of the Things (IoT) have made real-time tracking of systems a reality. The health of a product can also be continuously assessed throughout the manufacturing lifecycle by using Quality Control (QC) measures. Quality inspection is one of the critical processes in which the product is evaluated and deemed acceptable or rejected. The visual inspection or final inspection process involves a human operator sensorily examining the product to ascertain its status. However, there are several factors that impact the visual inspection process resulting in an overall inspection accuracy of around 80% in the industry. With the goal of 100% inspection in advanced manufacturing systems, manual visual inspection is both time-consuming and costly. Computer Vision (CV) based algorithms have helped in automating parts of the visual inspection process, but there are still unaddressed challenges. This paper presents an Artificial Intelligence (AI) based approach to the visual inspection process by using Deep Learning (DL). The approach includes a custom Convolutional Neural Network (CNN) for inspection and a computer application that can be deployed on the shop floor to make the inspection process user-friendly. The inspection accuracy for the proposed model is 99.86% on image data of casting products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yusuf发布了新的文献求助10
1秒前
鹏1989完成签到,获得积分10
1秒前
wwz发布了新的文献求助30
1秒前
3秒前
4秒前
4秒前
Serendipity应助Lee采纳,获得10
4秒前
刘刘发布了新的文献求助10
4秒前
科研混子发布了新的文献求助10
4秒前
5秒前
5秒前
优秀的问枫完成签到,获得积分10
5秒前
6秒前
科研通AI6应助谦让的冰真采纳,获得10
6秒前
酷波er应助开朗衬衫采纳,获得10
6秒前
完美世界应助小胡采纳,获得10
6秒前
付理想发布了新的文献求助20
6秒前
7秒前
8秒前
安全完成签到,获得积分10
8秒前
pluto应助爱尔兰海鲜面采纳,获得10
8秒前
8秒前
10秒前
10秒前
wai发布了新的文献求助10
11秒前
古炮发布了新的文献求助10
11秒前
Maestro_S应助yusuf采纳,获得10
11秒前
爱笑蓝给爱笑蓝的求助进行了留言
12秒前
李大帅完成签到,获得积分10
12秒前
漂亮翠曼完成签到,获得积分10
12秒前
wantingqq123完成签到,获得积分10
12秒前
12秒前
13秒前
大模型应助lilac采纳,获得10
13秒前
科研通AI6应助大鸡腿采纳,获得10
13秒前
13秒前
14秒前
mm发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4482099
求助须知:如何正确求助?哪些是违规求助? 3938262
关于积分的说明 12217489
捐赠科研通 3593432
什么是DOI,文献DOI怎么找? 1976124
邀请新用户注册赠送积分活动 1013292
科研通“疑难数据库(出版商)”最低求助积分说明 906480