亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence-Based Smart Quality Inspection for Manufacturing

目视检查 过程(计算) 质量(理念) 卷积神经网络 计算机科学 自动光学检测 产品(数学) 人工智能 机器视觉 工程类 制造业 制造工程 操作系统 哲学 认识论 数学 政治学 法学 几何学
作者
Sarvesh Sundaram,Abe Zeid
出处
期刊:Micromachines [MDPI AG]
卷期号:14 (3): 570-570 被引量:145
标识
DOI:10.3390/mi14030570
摘要

In today’s era, monitoring the health of the manufacturing environment has become essential in order to prevent unforeseen repairs, shutdowns, and to be able to detect defective products that could incur big losses. Data-driven techniques and advancements in sensor technology with Internet of the Things (IoT) have made real-time tracking of systems a reality. The health of a product can also be continuously assessed throughout the manufacturing lifecycle by using Quality Control (QC) measures. Quality inspection is one of the critical processes in which the product is evaluated and deemed acceptable or rejected. The visual inspection or final inspection process involves a human operator sensorily examining the product to ascertain its status. However, there are several factors that impact the visual inspection process resulting in an overall inspection accuracy of around 80% in the industry. With the goal of 100% inspection in advanced manufacturing systems, manual visual inspection is both time-consuming and costly. Computer Vision (CV) based algorithms have helped in automating parts of the visual inspection process, but there are still unaddressed challenges. This paper presents an Artificial Intelligence (AI) based approach to the visual inspection process by using Deep Learning (DL). The approach includes a custom Convolutional Neural Network (CNN) for inspection and a computer application that can be deployed on the shop floor to make the inspection process user-friendly. The inspection accuracy for the proposed model is 99.86% on image data of casting products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GingerF完成签到,获得积分0
7秒前
11秒前
444发布了新的文献求助10
14秒前
22秒前
35秒前
444完成签到,获得积分10
1分钟前
1分钟前
Michelle发布了新的文献求助10
1分钟前
曹国庆完成签到 ,获得积分10
1分钟前
科研通AI2S应助Michelle采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
独特的鱼发布了新的文献求助10
2分钟前
研友_VZG7GZ应助独特的鱼采纳,获得10
2分钟前
独特的鱼完成签到,获得积分20
2分钟前
2分钟前
3分钟前
3分钟前
寻道图强应助ovo采纳,获得60
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
LUO发布了新的文献求助10
4分钟前
4分钟前
TXZ06完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509741
求助须知:如何正确求助?哪些是违规求助? 4604529
关于积分的说明 14489862
捐赠科研通 4539326
什么是DOI,文献DOI怎么找? 2487477
邀请新用户注册赠送积分活动 1469867
关于科研通互助平台的介绍 1442090