In-situ activation induced surface reconstruction on Cr-incorporated Ni3S2 for enhanced alkaline hydrogen evolution reaction

原位 化学 曲面重建 材料科学 化学工程 曲面(拓扑) 有机化学 几何学 数学 工程类
作者
Ruidi Li,Cong Chen,Junxia Shen,Zhihe Wei,Pierre‐Yves Olu,Wen‐Sheng Dong,Yang Peng,Ronglei Fan,Mingrong Shen
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
标识
DOI:10.1039/d5cp00813a
摘要

Ni3S2 has emerged as one of the most promising hydrogen evolution reaction (HER) catalysts due to its moderate activity, exceptional electrical conductivity, and scalable synthesis methods. However, the high energy barrier for H2O dissociation and weak desorption of the H* intermediate severely hinder its HER kinetics. In this study, a novel Cr-incorporated Ni3S2 was grown on a Ni mesh substrate (denoted as Cr-Ni3S2/NM) using a one-step electrodeposition approach, resulting in a large surface area with abundant Ni3S2/Cr2S3 heterojunctions. Subsequently, it underwent surface reconstruction after in situ activation (denoted as A-Cr-Ni3S2/NM), which not only enhanced charge and mass transfer but also altered the electronic structure by introducing more oxygen species on the catalyst surface and creating S vacancies. Using theoretical calculations, this in situ activation was shown to not only promote charge transport but also boost HER kinetics by strengthening OH* desorption for H2O dissociation and facilitating the desorption of H* intermediates. As a result, the fabricated A-Cr-Ni3S2/NM demonstrated exceptional HER performance with a small overpotential of 78 mV to deliver a current density of -10 mA cm-2, along with stability for over 200 h at 100 mA cm-2. While surface reconstruction has been intensively studied in catalysts for the oxygen evolution reaction, we illustrate that it also plays a significant and positive role in Cr-Ni3S2 HER catalysts in this study, thus providing a pathway for achieving high-performance HER catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初雪完成签到,获得积分10
刚刚
1秒前
看星星完成签到 ,获得积分10
1秒前
wtu完成签到,获得积分10
2秒前
3秒前
枝挽完成签到,获得积分10
3秒前
乐乐应助billevans采纳,获得10
5秒前
viviancui发布了新的文献求助10
6秒前
虚幻的电灯胆完成签到,获得积分20
6秒前
CipherSage应助aaaaaaaaayep采纳,获得30
7秒前
7秒前
小刘完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
呦呦又鹿完成签到,获得积分10
8秒前
8秒前
风格完成签到,获得积分10
9秒前
Maple发布了新的文献求助10
9秒前
不安青牛应助LEOhard采纳,获得10
10秒前
隐形晓夏完成签到,获得积分10
10秒前
子车定帮完成签到,获得积分10
10秒前
ding应助Chris采纳,获得10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
bei发布了新的文献求助10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得30
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4402986
求助须知:如何正确求助?哪些是违规求助? 3889680
关于积分的说明 12105949
捐赠科研通 3534341
什么是DOI,文献DOI怎么找? 1939304
邀请新用户注册赠送积分活动 980109
科研通“疑难数据库(出版商)”最低求助积分说明 877107