亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning model for predicting spread through air spaces of lung adenocarcinoma based on transfer learning mechanism

机制(生物学) 学习迁移 医学 腺癌 深度学习 人工智能 计算机科学 癌症 内科学 哲学 认识论
作者
Jianing Zhang,Zhuofu Li,Si Hua Zheng,Jiaojiao Li,Leina Sun,Zhaoxiang Ye
出处
期刊:Translational lung cancer research [AME Publishing Company]
标识
DOI:10.21037/tlcr-24-985
摘要

Spread through air space (STAS) is a novel invasive pattern of lung adenocarcinoma (LUAD) associated with poor prognosis. Preoperative predicting of STAS helps choose an appropriate surgical and therapeutic strategy. This study aimed to develop and validate an STAS prediction model in LUAD based on deep learning algorithms. A dataset of 290 patients with preoperative chest computed tomography (CT) images and confirmed STAS status was retrospectively selected. Optimal semantic features were selected by logistic regression. Image features were learned from cubic patches containing lung tumors and the area around the tumor within 5/10/15 mm extracted from CT scans. ResNet50 architecture was used to train deep learning models based on the transfer learning mechanism. The optimal semantic features are combined with the deep learning model to construct a hybrid model. Receiver operating characteristic (ROC) curves were used to evaluate the performance. Patients were randomly partitioned into a training set (70%, n=203) and a test set (30%, n=87). The International Association for the Study of Lung Cancer (IASLC) grade, maximum tumor diameter, tumor density, spiculated sign, vacuole sign, and peritumor obstructive inflammation were incorporated into the hybrid model as independent predictors. The STAS-HYBRIDt10 proved to be the optimal STAS prediction model with an area under the curve (AUC) value of 0.874 in the training set and 0.801 in the test set. The sensitivity, specificity, and accuracy of STAS-HYBRIDt10 were 0.659/0.526, 0.904/0.837, and 0.798/0.701 in the training set and test set, respectively. The STAS-HYBRIDt10 has great potential for the preoperative prediction of STAS and may support decision-making for surgical and therapeutic planning in LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Thrain采纳,获得10
2秒前
干净傲霜完成签到 ,获得积分10
4秒前
魔幻乘云发布了新的文献求助10
4秒前
竹筏过海完成签到,获得积分0
6秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
11秒前
兼听则明应助科研通管家采纳,获得100
11秒前
慕青应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
坤桑完成签到 ,获得积分10
13秒前
山野完成签到 ,获得积分10
14秒前
17秒前
竺七完成签到 ,获得积分10
18秒前
siwei发布了新的文献求助30
21秒前
GD发布了新的文献求助50
26秒前
量子星尘发布了新的文献求助10
28秒前
30秒前
33秒前
41秒前
金毛上将完成签到,获得积分10
42秒前
43秒前
咕噜关注了科研通微信公众号
44秒前
沉默寡严完成签到,获得积分10
44秒前
传奇3应助Wzh采纳,获得30
55秒前
luxixi完成签到,获得积分10
59秒前
(# ̄д ̄)完成签到,获得积分10
1分钟前
顺利的源智完成签到 ,获得积分10
1分钟前
1分钟前
落叶捎来讯息完成签到 ,获得积分10
1分钟前
荆玉豪完成签到 ,获得积分10
1分钟前
小药童应助xy一切顺利采纳,获得10
1分钟前
1分钟前
mengqing完成签到 ,获得积分10
1分钟前
汉堡包应助咕噜采纳,获得30
1分钟前
香蕉觅云应助粒粒采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449605
求助须知:如何正确求助?哪些是违规求助? 4557722
关于积分的说明 14264820
捐赠科研通 4480856
什么是DOI,文献DOI怎么找? 2454582
邀请新用户注册赠送积分活动 1445382
关于科研通互助平台的介绍 1421087