NeuroPred-AIMP: Multimodal Deep Learning for Neuropeptide Prediction via Protein Language Modeling and Temporal Convolutional Networks

计算机科学 深度学习 卷积神经网络 人工智能 自然语言处理
作者
Jinjin Li,Shuwen Xiong,Hua Shi,Feifei Cui,Zilong Zhang,Leyi Wei
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.5c00444
摘要

Neuropeptides are key signaling molecules that regulate fundamental physiological processes ranging from metabolism to cognitive function. However, accurate identification is a huge challenge due to sequence heterogeneity, obscured functional motifs and limited experimentally validated data. Accurate identification of neuropeptides is critical for advancing neurological disease therapeutics and peptide-based drug design. Existing neuropeptide identification methods rely on manual features combined with traditional machine learning methods, which are difficult to capture the deep patterns of sequences. To address these limitations, we propose NeuroPred-AIMP (adaptive integrated multimodal predictor), an interpretable model that synergizes global semantic representation of the protein language model (ESM) and the multiscale structural features of the temporal convolutional network (TCN). The model introduced the adaptive features fusion mechanism of residual enhancement to dynamically recalibrate feature contributions, to achieve robust integration of evolutionary and local sequence information. The experimental results demonstrated that the proposed model showed excellent comprehensive performance on the independence test set, with an accuracy of 92.3% and the AUROC of 0.974. Simultaneously, the model showed good balance in the ability to identify positive and negative samples, with a sensitivity of 92.6% and a specificity of 92.1%, with a difference of less than 0.5%. The result fully confirms the effectiveness of the multimodal features strategy in the task of neuropeptide recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助勤劳绿毛龟采纳,获得10
2秒前
ding应助勤劳绿毛龟采纳,获得10
2秒前
科研通AI2S应助勤劳绿毛龟采纳,获得10
2秒前
3秒前
上官问寒应助吗喽采纳,获得10
4秒前
Zyd发布了新的文献求助10
7秒前
啊巴拉发布了新的文献求助10
8秒前
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
16秒前
干净土豆发布了新的文献求助10
16秒前
shijiediyi完成签到,获得积分20
18秒前
加百莉发布了新的文献求助10
19秒前
19秒前
huang发布了新的文献求助10
20秒前
啊巴拉完成签到,获得积分10
21秒前
21秒前
22秒前
展希希完成签到,获得积分20
23秒前
CipherSage应助等等采纳,获得10
25秒前
大模型应助等等采纳,获得10
25秒前
顾矜应助小罗采纳,获得10
25秒前
MiManchi发布了新的文献求助30
27秒前
医路成功完成签到,获得积分10
29秒前
29秒前
nandeyijia完成签到,获得积分10
30秒前
爆米花应助无心的荆采纳,获得10
32秒前
干净土豆完成签到,获得积分10
33秒前
小橙子应助无奈的小松鼠采纳,获得30
34秒前
长白完成签到,获得积分10
34秒前
明亮元柏发布了新的文献求助30
35秒前
35秒前
狮子卷卷完成签到,获得积分10
35秒前
甜甜友容发布了新的文献求助10
36秒前
37秒前
脑洞疼应助lzwwmx采纳,获得10
38秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097138
求助须知:如何正确求助?哪些是违规求助? 3634761
关于积分的说明 11521675
捐赠科研通 3345216
什么是DOI,文献DOI怎么找? 1838530
邀请新用户注册赠送积分活动 906104
科研通“疑难数据库(出版商)”最低求助积分说明 823456