Artificial Intelligence Model for Real-Time Prenatal Nuchal Translucency Assessment: High Performance and Workflow Integration

工作流程 接收机工作特性 鉴定(生物学) 审计 人工智能 医学 计算机科学 医学物理学 机器学习 数据库 植物 生物 经济 管理
作者
Yuanji Zhang,Xin Yang,Chunya Ji,Xindi Hu,Ya Cao,Chaoyu Chen,He Sui,Binghan Li,Chaojiong Zhen,Weijun Huang,Xuedong Deng,Linliang Yin,Dong Ni
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240498
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate an artificial intelligence-based model for real-time nuchal translucency (NT) plane identification and measurement in prenatal US assessments. Materials and Methods In this retrospective multicenter study conducted from January 2022 to October 2023, the automated identification and measurement of NT (AIM-NT) model was developed and evaluated using internal and external datasets. NT plane assessment, including identification of the NT plane and measurement of NT thickness, was independently conducted by AIM-NT and experienced radiologists, with the results subsequently audited by radiology specialists and accuracy compared between groups. To assess alignment of AI with radiologist workflow, discrepancies between the AIM-NT model and radiologists in NT plane identification time and thickness measurements were evaluated. Results The internal datasets included a total of 3959 NT images from 3153 fetuses, while the external dataset included 267 US videos from 267 fetuses. On the internal testing dataset, AIM-NT achieved an area under the receiver operating characteristic curve of 0.92 for NT plane identification. On the external testing dataset, there was no evidence of differences between AIM-NT and radiologists in NT plane identification accuracy (88.8% versus 87.6%, P = .69) or NT thickness measurements on standard and nonstandard NT planes ( P = .29, 0.59). AIM-NT demonstrated high consistency with radiologists in NT plane identification time, with one-minute discrepancies observed in 77.9% of cases, and NT thickness measurements, with a mean difference of 0.03 mm and mean absolute error of 0.22 mm [95% CI: 0.19 mm, 0.25 mm]. Conclusion AIM-NT demonstrated high accuracy in identifying the NT plane and measuring NT thickness on prenatal US, showing minimal discrepancies with radiologist workflow. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
net80yhm发布了新的文献求助10
1秒前
3秒前
6秒前
淡蓝色发布了新的文献求助10
8秒前
我是老大应助ken采纳,获得10
9秒前
9秒前
net80yhm完成签到,获得积分10
10秒前
caimiemie发布了新的文献求助10
11秒前
可爱的函函应助xhlxhlxhl采纳,获得10
11秒前
负责觅海发布了新的文献求助10
14秒前
叶沐完成签到,获得积分10
16秒前
淡蓝色完成签到,获得积分10
17秒前
18秒前
18秒前
斯文败类应助ray采纳,获得10
20秒前
20秒前
ken完成签到,获得积分10
21秒前
史小霜发布了新的文献求助10
23秒前
24秒前
ken发布了新的文献求助10
24秒前
英俊的铭应助去吧海燕采纳,获得10
25秒前
Leo发布了新的文献求助10
25秒前
26秒前
xhlxhlxhl完成签到,获得积分10
27秒前
念初完成签到 ,获得积分10
27秒前
28秒前
xhlxhlxhl发布了新的文献求助10
29秒前
科研通AI2S应助伍德沃德采纳,获得10
29秒前
就叫柠檬吧应助nenoaowu采纳,获得10
32秒前
ray发布了新的文献求助10
33秒前
迟暮发布了新的文献求助10
34秒前
35秒前
睡不醒发布了新的文献求助10
35秒前
半杯面包完成签到 ,获得积分10
36秒前
冰魂应助Niu采纳,获得50
38秒前
嘉深完成签到,获得积分10
38秒前
淡定的勒发布了新的文献求助10
40秒前
小生不才完成签到 ,获得积分10
45秒前
as9988776654完成签到 ,获得积分10
46秒前
CodeCraft应助丰富画笔采纳,获得10
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547