Towards Diagnostic Intelligent Systems in Leukemia Detection and Classification: A Systematic Review and Meta‐analysis

荟萃分析 计算机科学 白血病 人工智能 医学 内科学
作者
Mehrad Aria,Zohreh Javanmard,Donia Pishdad,Vahid Jannesari,Maryam Keshvari,Mahshid Arastonejad,Reza Safdari,Mohammad Esmaeil Akbari
出处
期刊:Journal of Evidence-based Medicine [Wiley]
卷期号:18 (1)
标识
DOI:10.1111/jebm.70005
摘要

ABSTRACT Objective Leukemia is a type of blood cancer that begins in the bone marrow and results in high numbers of abnormal white blood cells. Automated detection and classification of leukemia and its subtypes using artificial intelligence (AI) and machine learning (ML) algorithms plays a significant role in the early diagnosis and treatment of this fatal disease. This study aimed to review and synthesize research findings on AI‐based approaches in leukemia detection and classification from peripheral blood smear images. Methods A systematic literature search was conducted across four e‐databases (Web of Science, PubMed, Scopus, and IEEE Xplore) from January 2015 to March 2023 by searching the keywords “Leukemia,” “Machine Learning,” and “Blood Smear Image,” as well as their synonyms. All original journal articles and conference papers that used ML algorithms in detecting and classifying leukemia were included. The study quality was assessed using the Qiao Quality Assessment tool. Results From 1325 articles identified through a systematic search, 190 studies were eligible for this review. The mean validation accuracy (ACC) of the ML methods applied in the reviewed studies was 95.38%. Among different ML methods, modern techniques were mostly considered to detect and classify leukemia (60.53% of studies). Supervised learning was the dominant ML paradigm (79% of studies). Studies utilized common ML methodologies for leukemia detection and classification, including preprocessing, feature extraction, feature selection, and classification. Deep learning (DL) techniques, especially convolutional neural networks, were the most widely used modern algorithms in the mentioned methodologies. Most studies relied on internal validation (87%). Moreover, K‐fold cross‐validation and train/test split were the commonly employed validation strategies. Conclusion AI‐based algorithms are widely used in detecting and classifying leukemia with remarkable performance. Future studies should prioritize rigorous external validation to evaluate generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zero发布了新的文献求助10
2秒前
3秒前
勤恳的嚓茶完成签到,获得积分10
3秒前
rui发布了新的文献求助10
4秒前
含蓄听南完成签到,获得积分10
4秒前
林菲菲完成签到,获得积分10
5秒前
轻语发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
斯文败类应助疯狂的夏天采纳,获得10
10秒前
科研通AI5应助QQ采纳,获得10
11秒前
Merak完成签到,获得积分10
11秒前
leotao完成签到,获得积分10
11秒前
six完成签到,获得积分10
13秒前
medmh发布了新的文献求助10
13秒前
乐乐发布了新的文献求助10
14秒前
14秒前
15秒前
花花应助Grant采纳,获得10
16秒前
18秒前
18秒前
19秒前
rui完成签到,获得积分10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
慕青应助乐乐采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
LiangHu发布了新的文献求助10
22秒前
11111发布了新的文献求助10
22秒前
慕青应助百灵采纳,获得10
23秒前
情怀应助medmh采纳,获得10
26秒前
脑洞疼应助天空没有极限采纳,获得10
26秒前
李健的小迷弟应助yikeshu采纳,获得10
27秒前
轻语完成签到,获得积分10
27秒前
27秒前
28秒前
童话艺术佳完成签到,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783657
求助须知:如何正确求助?哪些是违规求助? 3328839
关于积分的说明 10238741
捐赠科研通 3044202
什么是DOI,文献DOI怎么找? 1670861
邀请新用户注册赠送积分活动 799939
科研通“疑难数据库(出版商)”最低求助积分说明 759171