Preoperative Prediction of Non-functional Pituitary Neuroendocrine Tumors and Posterior Pituitary Tumors Based on MRI Radiomic Features

神经内分泌肿瘤 垂体瘤 无线电技术 医学 垂体后叶 磁共振成像 垂体 放射科 病理 内科学 激素
作者
Shucheng Jin,Xu Qin,Chen Sun,Yuan Zhang,Yangyang Wang,Xi Wang,Xiudong Guan,Deling Li,Yiming Li,Chuanbao Zhang,Wang Jia
标识
DOI:10.1007/s10278-025-01400-1
摘要

Compared to non-functional pituitary neuroendocrine tumors (NF-PitNETs), posterior pituitary tumors (PPTs) require more intraoperative protection of the pituitary stalk and hypothalamus, and their perioperative management is more complex than NF-PitNETs. However, they are difficult to be distinguished via magnetic resonance images (MRI) before operation. Based on clinical features and radiological signature extracted from MRI, this study aims to establish a model for distinguishing NF-PitNETs and PPTs. Preoperative MRI of 110 patients with NF-PitNETs and 55 patients with PPTs were retrospectively obtained. Patients were randomly assigned to the training (n = 110) and validation (n = 55) cohorts in a 2:1 ratio. The lest absolute shrinkage and selection operator (LASSO) algorithm was applied to develop a radiomic signature. Afterwards, an individualized predictive model (nomogram) incorporating radiomic signatures and predictive clinical features was developed. The nomogram's performance was evaluated by calibration and decision curve analyses. Five features derived from contrast-enhanced images were selected using the LASSO algorithm. Based on the mentioned methods, the calculation formula of radiomic score was obtained. The constructed nomogram incorporating radiomic signature and predictive clinical features showed a good calibration and outperformed the clinical features for predicting NF-PitNETs and PPTs (area under the curve [AUC]: 0.937 vs. 0.595 in training cohort [p < 0.001]; 0.907 vs. 0.782 in validation cohort [p = 0.03]). The decision curve shows that the individualized predictive model adds more benefit than clinical feature when the threshold probability ranges from 10 to 100%. Individualized predictive model provides a novel noninvasive imaging biomarker and could be conveniently used to distinguish NF-PitNETs and PPTs, which provides a significant reference for preoperative preparation and intraoperative decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
重生之搞化工完成签到 ,获得积分10
1秒前
罐罐儿应助香蕉静芙采纳,获得10
1秒前
2秒前
2秒前
ihtw完成签到,获得积分10
2秒前
独特的如雪完成签到,获得积分10
2秒前
友谊发布了新的文献求助10
3秒前
玉米也会爆完成签到,获得积分10
3秒前
kk完成签到,获得积分10
3秒前
刘华银完成签到,获得积分10
3秒前
宋敬涛发布了新的文献求助10
3秒前
caffeine完成签到,获得积分10
4秒前
hhhhhhhh发布了新的文献求助20
4秒前
Kia完成签到,获得积分20
4秒前
4秒前
阳佟水蓉完成签到,获得积分10
4秒前
4秒前
5秒前
福福完成签到,获得积分10
5秒前
5秒前
bkagyin应助优美寒梦采纳,获得10
6秒前
6秒前
6秒前
liyk完成签到,获得积分10
6秒前
fanny发布了新的文献求助10
7秒前
Ava应助huayi采纳,获得10
8秒前
rusellw完成签到,获得积分20
8秒前
符宇新发布了新的文献求助30
8秒前
舒心莫言完成签到,获得积分10
8秒前
9秒前
wanci应助Artsuhtaraz采纳,获得10
9秒前
日进一data完成签到,获得积分10
9秒前
9秒前
9秒前
CG2021发布了新的文献求助10
10秒前
11秒前
Gying完成签到,获得积分10
11秒前
蟹黄堡完成签到,获得积分10
11秒前
Yumori应助默默千亦采纳,获得10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1500
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3981852
求助须知:如何正确求助?哪些是违规求助? 3525546
关于积分的说明 11227511
捐赠科研通 3263425
什么是DOI,文献DOI怎么找? 1801493
邀请新用户注册赠送积分活动 879880
科研通“疑难数据库(出版商)”最低求助积分说明 807593