尾矿
根际
基因组
微生物
锌
铅(地质)
重金属
抵抗性
环境化学
环境科学
弹性(材料科学)
生物
化学
细菌
抗生素耐药性
材料科学
古生物学
生物化学
遗传学
有机化学
物理化学
基因
复合材料
整合子
作者
Sixi Zhu,Huan Mao,Xiuqin Yang,Wei Zhao,Luying Sheng,Suxia Sun,Xinzhe Du
标识
DOI:10.1016/j.ecoenv.2025.117956
摘要
This study investigates the impact of heavy metal contamination in lead-zinc tailings on plant and soil microbial communities, focusing on the resilience mechanisms of rhizosphere microorganisms in these extreme environments. Utilizing metagenomic techniques, we identified a significant association between Coriaria nepalensis Wall. rhizosphere microbial communities and metal(loid) resistance genes. Our results reveal a notable diversity and abundance of bacteria within the rhizosphere of tailings, primarily consisting of Proteobacteria, Actinobacteria, and Chloroflexi. The presence of metal-resistant bacterial taxa, including Afipia, Bradyrhizobium, Sphingomonas, and Miltoncostaea, indicates specific evolutionary adaptations to metal-rich, nutrient-deficient environments. Elevated expression of resistance genes such as znuD, zntA, pbrB, and pbrT underscores the microorganisms' ability to endure these harsh conditions. These resistance genes are crucial for maintaining biodiversity, ecosystem stability, and adaptability. Our findings enhance the understanding of interactions between heavy metal contamination, microbial community structure, and resistance gene dynamics in lead-zinc tailings. Additionally, this research provides a theoretical and practical foundation for employing plant-microbial synergies in the in-situ remediation of contaminated sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI