Comparison of sensitivity for Risk of Ovarian Malignancy Algorithm (ROMA) and Assessment of Different NEoplasias in the adneXa (ADNEX) model for predicting ovarian cancer in a woman with adnexal masses

医学 妇科 卵巢癌 恶性肿瘤 算法 癌症 肿瘤科 产科 内科学 计算机科学
作者
Pakorn Tangjanyatham,Woraphot Chaowawanit
出处
期刊:International Journal of Gynecological Cancer [BMJ]
卷期号:35 (6): 101827-101827 被引量:1
标识
DOI:10.1016/j.ijgc.2025.101827
摘要

This study aimed to compare the diagnostic performance of the Risk of Ovarian Malignancy Algorithm (ROMA) and the Assessment of Different NEoplasias in the adneXa (ADNEX) model in predicting ovarian cancer in women presenting with adnexal masses METHODS: A prospective diagnostic study was conducted at the Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Thailand. A total of 110 women with adnexal masses confirmed by ultrasound were enrolled. Pre-operative transvaginal ultrasound findings, serum CA125, and HE4 levels were used to evaluate the diagnostic performance of the ROMA and ADNEX models, with histopathological examination as the reference standard. The ADNEX model applied a 10% malignancy risk cutoff. Using a 10% cutoff, the ADNEX model achieved a sensitivity of 91.9% and a specificity of 65.7%. In comparison, ROMA demonstrated a sensitivity of 64.8% and a specificity of 86.3%. The combined use of ADNEX and ROMA did not significantly improve diagnostic specificity. The receiver operating characteristic analysis for the ADNEX model showed an area under the curve of 0.83, indicating good diagnostic accuracy. The optimal threshold for malignancy risk was identified at a 13.8% cutoff, balancing sensitivity and specificity. The ADNEX model, with a 10% malignancy risk cutoff, provides superior sensitivity in diagnosing ovarian cancer in adnexal mass cases and could significantly contribute to early detection strategies. However, its lower specificity highlights the need for cautious interpretation. Further studies are warranted to refine these models and enhance their applicability across diverse clinical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助wzy采纳,获得10
刚刚
CipherSage应助谎言桃采纳,获得10
刚刚
科目三应助俞弼采纳,获得20
1秒前
酷波er应助冷静的谷云采纳,获得10
1秒前
canter完成签到 ,获得积分10
1秒前
陈chen完成签到 ,获得积分10
1秒前
果粒橙980完成签到,获得积分10
1秒前
温暖听安完成签到,获得积分10
2秒前
小初发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
害羞山菡发布了新的文献求助10
3秒前
4秒前
自然墨镜应助foreest采纳,获得10
5秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
秋秋发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
李健应助火星上眼睛采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
wml应助科研通管家采纳,获得10
6秒前
wml应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758381
求助须知:如何正确求助?哪些是违规求助? 5514960
关于积分的说明 15390675
捐赠科研通 4895730
什么是DOI,文献DOI怎么找? 2633271
邀请新用户注册赠送积分活动 1581338
关于科研通互助平台的介绍 1537004