Radiomics Based Prediction of Local Recurrence Following Stereotactic Body Radiation Therapy (SBRT) for Early-Stage Non-Small Cell Lung Cancer

医学 无线电技术 阶段(地层学) 肺癌 放射外科 放射治疗 放射科 肿瘤科 内科学 生物 古生物学
作者
Chioma P Ogbonna,William G. Breen,P. Noach,Srinivasan Rajagopalan,Logan Hostetter,Fabien Maldonado,Brian J. Bartholmai,Kenneth W. Merrell,T. Peikert
出处
期刊:Annals of the American Thoracic Society [American Thoracic Society]
标识
DOI:10.1513/annalsats.202410-1047oc
摘要

Stereotactic body radiation therapy (SBRT) represents an effective therapeutic strategy for early-stage non-small cell lung cancer (NSCLC), however local and systemic recurrences represent ongoing challenges. Computed tomography (CT) radiomics based risk models can potentially be utilized to predict the risk of local recurrence on pre-treatment CT scans. This single institution study includes a retrospective case-control training set (20 patients with local recurrence and 40 controls) and an independent validation set (198 consecutive cases) of early-stage NSCLC patients treated with SBRT. Tumors were semi-automatically segmented and 102 quantitative radiomic features including texture, landscape, spatial, nodule shape, and nodule surface features extracted. These features were included in three separate multivariable models to predict the risk of recurrence based on the pre-SBRT, post-SBRT, and the difference between the pre-SBRT and the post-SBRT scans (Delta model). The pre-SBRT model was subsequently validated in an independent validation set. Thirteen independent variables were selected for the models using the Boruta algorithm. The sensitivity, specificity, and area under the curve (AUC) of the pre-SBRT, post-SBRT and Delta-models were 85%, 90%, and 0.91; 85%, 92.5%, and 0.92; and 85%, 92.5%, and 0.94, respectively. The pre-SBRT model was validated in the independent validation set, AUC of 0.89 (CI 0.83-0.92) as this model was felt to be the most useful to assist in individualized treatment planning. Radiomic analysis facilitated the development of three high-performing models predicting local recurrence using either pre-SBRT CT, post-SBRT CT, or the change between these two. We successfully validated the most clinically relevant model, pre-SBRT model. While this model needs further validation, it may facilitate individualized surveillance, treatment planning and selection of adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
campus完成签到,获得积分10
1秒前
HaHa完成签到,获得积分10
1秒前
斯文问旋完成签到,获得积分10
1秒前
快乐再出发完成签到,获得积分10
1秒前
大饼发布了新的文献求助10
1秒前
肥牛芋泥泥完成签到,获得积分10
2秒前
Owen应助lin采纳,获得10
2秒前
2秒前
juphen2发布了新的文献求助10
2秒前
林深完成签到,获得积分10
2秒前
2秒前
美梦成真完成签到,获得积分10
2秒前
cecisweet发布了新的文献求助10
3秒前
perry4rosa完成签到,获得积分0
4秒前
4秒前
zz完成签到,获得积分10
4秒前
yqsf789发布了新的文献求助10
4秒前
逸风望完成签到,获得积分10
5秒前
6秒前
6秒前
医学一小生完成签到,获得积分10
6秒前
飘雪完成签到,获得积分10
6秒前
淡淡土豆应助郑鹏飞采纳,获得10
7秒前
7秒前
7秒前
哈哈发布了新的文献求助10
7秒前
8秒前
8秒前
李爱国应助Echo采纳,获得10
8秒前
流星砸地鼠完成签到,获得积分10
8秒前
北林完成签到 ,获得积分10
8秒前
沉静念烟完成签到,获得积分10
8秒前
顾矜应助Cheryl采纳,获得10
8秒前
9秒前
liw发布了新的文献求助10
9秒前
李爱国应助slk采纳,获得10
9秒前
10秒前
靓丽的欢乐完成签到 ,获得积分10
10秒前
小田发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924