焓
计算
原子间势
熵(时间箭头)
统计物理学
计算机科学
热力学
材料科学
物理
量子力学
算法
分子动力学
作者
Jacob T. Sivak,Saeed S. I. Almishal,Mary Kathleen Caucci,Yueze Tan,Dhiya Srikanth,Joseph Petruska,Matthew Furst,Long‐Qing Chen,Christina M. Rost,Jon‐Paul Maria,Susan B. Sinnott
标识
DOI:10.1103/physrevlett.134.216101
摘要
High-entropy materials shift the traditional materials discovery paradigm to one that leverages disorder, enabling access to unique chemistries unreachable through enthalpy alone. We present a self-consistent approach integrating computation and experiment to understand and explore single-phase rocksalt high-entropy oxides. By leveraging a machine-learning interatomic potential, we rapidly and accurately map high-entropy composition space using our two descriptors: bond length distribution and mixing enthalpy. The single-phase stabilities for all experimentally stabilized rocksalt compositions are correctly resolved, with dozens more compositions awaiting discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI