Jacobian norm with Selective Input Gradient Regularization for interpretable adversarial defense

可解释性 对抗制 计算机科学 雅可比矩阵与行列式 深层神经网络 人工智能 机器学习 稳健性(进化) 正规化(语言学) 深度学习 规范(哲学) 数学 基因 政治学 化学 法学 生物化学 应用数学
作者
Deyin Liu,Lin Wu,Bo Li,Farid Boussaïd,Mohammed Bennamoun,Xianghua Xie,Chengwu Liang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109902-109902 被引量:3
标识
DOI:10.1016/j.patcog.2023.109902
摘要

Deep neural networks (DNNs) can be easily deceived by imperceptible alterations known as adversarial examples. These examples can lead to misclassification, posing a significant threat to the reliability of deep learning systems in real-world applications. Adversarial training (AT) is a popular technique used to enhance robustness by training models on a combination of corrupted and clean data. However, existing AT-based methods often struggle to handle transferred adversarial examples that can fool multiple defense models, thereby falling short of meeting the generalization requirements for real-world scenarios. Furthermore, AT typically fails to provide interpretable predictions, which are crucial for domain experts seeking to understand the behavior of DNNs. To overcome these challenges, we present a novel approach called Jacobian norm and Selective Input Gradient Regularization (J-SIGR). Our method leverages Jacobian normalization to improve robustness and introduces regularization of perturbation-based saliency maps, enabling interpretable predictions. By adopting J-SIGR, we achieve enhanced defense capabilities and promote high interpretability of DNNs. We evaluate the effectiveness of J-SIGR across various architectures by subjecting it to powerful adversarial attacks. Our experimental evaluations provide compelling evidence of the efficacy of J-SIGR against transferred adversarial attacks, while preserving interpretability. The project code can be found at https://github.com/Lywu-github/jJ-SIGR.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
JMH完成签到,获得积分10
3秒前
e001应助wxh1314采纳,获得10
3秒前
4秒前
Yang应助HH采纳,获得10
4秒前
5秒前
峇蘭完成签到,获得积分10
5秒前
able发布了新的文献求助10
6秒前
彭于晏应助Cathy采纳,获得10
6秒前
leo发布了新的文献求助10
6秒前
NexusExplorer应助随遇而安采纳,获得10
7秒前
greenimp关注了科研通微信公众号
7秒前
dery发布了新的文献求助10
9秒前
峇蘭发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
鸣笛应助科研通管家采纳,获得30
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
优雅苑睐发布了新的文献求助10
11秒前
water应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
14秒前
科研通AI2S应助哈哈采纳,获得10
15秒前
斯文败类应助swzzaf采纳,获得20
15秒前
16秒前
ljz完成签到,获得积分20
16秒前
18秒前
abcd发布了新的文献求助10
18秒前
ZJD完成签到,获得积分10
19秒前
19秒前
优雅苑睐完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916263
求助须知:如何正确求助?哪些是违规求助? 3461779
关于积分的说明 10918925
捐赠科研通 3188596
什么是DOI,文献DOI怎么找? 1762727
邀请新用户注册赠送积分活动 853123
科研通“疑难数据库(出版商)”最低求助积分说明 793649