Introducing Semantic-Based Receptive Field into Semantic Segmentation via Graph Neural Networks

计算机科学 分割 人工智能 模式识别(心理学) 图形 稳健性(进化) 可解释性 卷积神经网络 机器学习 理论计算机科学 生物化学 化学 基因
作者
Daixi Jia,Hang Gao,Xingzhe Su,Fengge Wu,Junsuo Zhao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 434-451 被引量:2
标识
DOI:10.1007/978-981-99-8076-5_32
摘要

Current semantic segmentation models typically use deep learning models as encoders. However, these models have a fixed receptive field, which can cause mixed information within the receptive field and lead to confounding effects during neural network training. To address these limitations, we propose the “semantic-based receptive field” based on our analysis in current models. This approach seeks to improve the segmentation performance by aggregate image patches with similar representation rather than their physical location, aiming to enhance the interpretability and accuracy of semantic segmentation models. For implementation, we utilize Graph representation learning (GRL) approaches into current semantic segmentation models. Specifically, we divide the input image into patches and construct them into graph-structured data that expresses semantic similarity. Our Graph Convolution Receptor block uses graph-structured data purpose-built from image data and adopt a node-classification-like perspective to address the problem of semantic segmentation. Our GCR module models the relationship between semantic relative patches, allowing us to mitigate the adverse effects of confounding information and improve the quality of feature representation. By adopting this approach, we aim to enhance the accuracy and robustness of the semantic segmentation task. Finally, we evaluated our proposed module on multiple semantic segmentation models and compared its performance to baseline models on multiple semantic segmentation datasets. Our empirical evaluations demonstrate the effectiveness and robustness of our proposed module, as it consistently outperformed baseline models on these datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帕尼灬尼完成签到,获得积分10
2秒前
高分子完成签到,获得积分10
3秒前
4秒前
顾矜应助树123采纳,获得10
5秒前
eurus发布了新的文献求助10
5秒前
伶俐如冰完成签到,获得积分10
7秒前
14秒前
15秒前
15秒前
坦率纸飞机完成签到,获得积分10
15秒前
16秒前
科研通AI5应助pearl采纳,获得10
18秒前
fox完成签到 ,获得积分10
19秒前
19秒前
小马甲应助lululala采纳,获得10
23秒前
小马甲应助renxx采纳,获得10
23秒前
23秒前
23秒前
dongqing12311完成签到,获得积分10
24秒前
24秒前
个性百川发布了新的文献求助10
24秒前
Ava应助eurus采纳,获得10
25秒前
26秒前
18621058639完成签到,获得积分10
27秒前
yyxhahaha完成签到,获得积分10
28秒前
树123发布了新的文献求助10
29秒前
先森发布了新的文献求助10
29秒前
大漂亮发布了新的文献求助10
29秒前
31秒前
SciGPT应助老武采纳,获得10
32秒前
32秒前
huangxiaoniu完成签到,获得积分10
36秒前
大漂亮完成签到,获得积分20
37秒前
38秒前
先森完成签到,获得积分10
40秒前
NexusExplorer应助自信猕猴桃采纳,获得10
40秒前
cach完成签到,获得积分10
40秒前
sandwich完成签到 ,获得积分10
42秒前
eurus发布了新的文献求助10
45秒前
在水一方应助科研通管家采纳,获得10
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332370
捐赠科研通 3063467
什么是DOI,文献DOI怎么找? 1681747
邀请新用户注册赠送积分活动 807681
科研通“疑难数据库(出版商)”最低求助积分说明 763864