Transition metal-based self-supported anode for electrocatalytic water splitting at a large current density

化学 催化作用 析氧 电催化剂 分解水 制氢 阳极 电解水 过渡金属 电解 电化学 化学工程 无机化学 纳米技术 材料科学 电极 有机化学 电解质 物理化学 光催化 工程类
作者
Zhong Li,Xinglin Zhang,Changjin Ou,Yizhou Zhang,Wenjun Wang,Shengyang Dong,Xiaochen Dong
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:495: 215381-215381 被引量:70
标识
DOI:10.1016/j.ccr.2023.215381
摘要

Hydrogen produced from water electrolysis is a promising alternative to fossil fuels. The oxygen evolution reaction (OER), which occurs at the anode, involves a four-electron transfer process and requires a large potential to overcome the energy barrier. To address this challenge and reduce the cost associated with noble-metal catalysts, transition metal (TM) based catalysts offer a cost-effective solution. Compared to powder catalysts, TM-based catalysts in situ grown on conductive substrates are more suitable for industrial hydrogen production at large current density. Additionally, oxidation reactions with lower thermodynamic potential than OER have been explored as alternatives to reduce power consumption in electrohydrolysis hydrogen production. In this review, we provide an overview of the evaluation criterion, selection of substrate, preparation methods for self-supporting catalysts and their respective advantages and disadvantages. We also discuss the principle of active site selection and various strategies for enhancing the activity of catalysts, including metal doping, heteroatom doping, co-doping of both, heterojunctions, amorphization, compositing with conductive materials, morphology engineering, and creating superhydrophilic and superaerophobic surface. We then examine alternative anode reactions, such as urea oxidation, hydrazine oxidation, glucose oxidation and alcohol oxidation reactions. Finally, we outline the current challenges in the design of electrocatalysts and anodic oxidation reactions and provide an outlook on the future of hydrogen production using TM-based self-supported electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyndi发布了新的文献求助10
刚刚
刚刚
荼白完成签到 ,获得积分10
刚刚
刚刚
韦远侵完成签到,获得积分10
刚刚
ala完成签到,获得积分10
1秒前
啾啾完成签到 ,获得积分10
1秒前
鸭子发布了新的文献求助10
1秒前
大大大骁完成签到,获得积分20
2秒前
wwc完成签到,获得积分10
2秒前
李小雨发布了新的文献求助10
2秒前
今后应助风清扬采纳,获得10
5秒前
白云发布了新的文献求助10
5秒前
浮游应助白白白采纳,获得10
5秒前
搜集达人应助Qiangjianjie采纳,获得10
5秒前
科目三应助南乔采纳,获得10
6秒前
悦耳亦云完成签到 ,获得积分10
6秒前
九湖夷上完成签到,获得积分10
7秒前
科研通AI6应助小陶采纳,获得10
7秒前
刘凯蕊完成签到 ,获得积分10
7秒前
胖胖胖胖完成签到,获得积分10
7秒前
莫三颜完成签到 ,获得积分10
8秒前
清风细雨完成签到 ,获得积分10
8秒前
Ray完成签到,获得积分10
8秒前
123456789完成签到,获得积分10
8秒前
pp完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
调皮曼冬完成签到,获得积分10
12秒前
12秒前
黄大仙完成签到,获得积分10
12秒前
小吴完成签到,获得积分10
12秒前
LW90完成签到,获得积分10
13秒前
Liangyong_Fu完成签到 ,获得积分10
13秒前
赘婿应助水平做采纳,获得10
13秒前
练得身形似鹤形完成签到 ,获得积分10
14秒前
Dorren发布了新的文献求助10
14秒前
111发布了新的文献求助10
14秒前
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212962
求助须知:如何正确求助?哪些是违规求助? 4388957
关于积分的说明 13665312
捐赠科研通 4249723
什么是DOI,文献DOI怎么找? 2331751
邀请新用户注册赠送积分活动 1329470
关于科研通互助平台的介绍 1282998