Multiple Deep Proximal Learning for Hyperspectral-Multispectral Image Fusion

人工智能 高光谱成像 计算机科学 多光谱图像 深度学习 模式识别(心理学) 融合 图像融合 计算机视觉 图像(数学) 哲学 语言学
作者
Jingxiang Yang,Tian Lin,Xiaoyang Chen,Liang Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2023.3319069
摘要

Fusing low resolution (LR) hyperspectral image (HSI) with a high resolution (HR) multispectral image (MSI) could enhance the spatial resolution and quality of HSI. Current deep learning (DL) HSI-MSI fusion networks have achieved encouraging results, but their performance relies on large number of training images with known degradations consistent with the testing data. The trained DL model may fail on data with unseen degradations during inference. In this study, we propose a multiple deep proximal learning network (MDPro-Net) for HSI-MSI fusion, the unknown spatial-spectral degradations and latent HR HSI can be adaptively inferred. We first propose a joint variational fusion model with both the degradations and HR HSI as to-be-solved variables, which are regularized by multiple deep priors. Then we optimize the fusion model using quadratic splitting and alternative optimization strategy. The unknown blurring kernel, spectral degradation, and HR HSI are explicitly solved by three deep proximal operators. Through unrolling the solutions into a DL network, we build MDPro-Net, in which the deep proximal operators for degradations and HR HSI are learned in an end-to-end manner. Furthermore, in the deep proximal operator for latent HR HSI, a multi-scale transformer is designed to exploit the local and non-local dependencies. Experiments demonstrate that the proposed MDPro-Net is competitive with state-of-the-art fusion methods, in particular, it is robust in inferring the unseen degradations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
往返完成签到,获得积分10
1秒前
唯泽发布了新的文献求助10
2秒前
Zheng完成签到,获得积分10
3秒前
今后应助金垚采纳,获得10
4秒前
酷波er应助HH采纳,获得10
5秒前
5秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
浮生应助科研通管家采纳,获得20
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
星期五应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
Bowingyang应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
可爱的函函应助海南采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
Bowingyang应助科研通管家采纳,获得10
7秒前
聪明凡之应助科研通管家采纳,获得10
7秒前
星期五应助科研通管家采纳,获得10
7秒前
好好应助科研通管家采纳,获得20
7秒前
大胆初雪发布了新的文献求助10
8秒前
8秒前
Zheng发布了新的文献求助10
8秒前
Agnesma完成签到,获得积分10
9秒前
11秒前
顺风顺水发布了新的文献求助10
11秒前
汐白完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851