Identifying potential action points for improving sleep and mental health among employees: A network analysis

心理健康 动作(物理) 心理学 精神科 睡眠(系统调用) 医学 物理 量子力学 计算机科学 操作系统
作者
Bin Yu,Yao Fu,Shu Dong,Jan D. Reinhardt,Peng Jia,Shujuan Yang
出处
期刊:Sleep Medicine [Elsevier BV]
卷期号:113: 76-83 被引量:6
标识
DOI:10.1016/j.sleep.2023.11.020
摘要

Mental health issues are severe public health problems, inevitably affected by, also affecting, sleep. We used network analysis to estimate the relationship among various aspects of sleep and mental health simultaneously, and identify potential action points for improving sleep and mental health among employees. We used data from the baseline survey of the Chinese Cohort of Working Adults that recruited 31,105 employees between October 1st and December 31st, 2021. The mental health included anxiety (measured by the Generalized Anxiety Disorder-7), depression (Patient Health Questionnaire-9]), loneliness (Short Loneliness Scale), well-being (Short Scales of Flourishing and Positive and Negative Feelings), and implicit health attitude (Lay Theory of Health Measures). Seven dimensions of sleep were assessed by the Pittsburgh Sleep Quality Index. An undirected network model and two directed network approaches, including Bayesian Directed Acyclic Graphs (DAGs) and Evidence Synthesis for Constructing-DAGs (ESC-DAGs), were applied to investigate associations between variables and identify key variables. Depression, daytime dysfunction, and well-being were the "bridges" connecting the domains of sleep and mental health in the undirected network, and were in the main pathway connecting most variables in the Bayesian DAG. Anxiety constituted a gateway that activated other sleep and mental health variables, with sleep duration and implicit health attitude forming end points of the pathway. Similar directed pathways were confirmed in the ESC-DAG. Our network study suggests anxiety, depression, well-being, and daytime dysfunction may be potential action points in preventing the development of poor sleep and mental health outcomes for employees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
academician完成签到,获得积分10
4秒前
小卢卢快闭嘴完成签到,获得积分10
5秒前
Orange应助刘敏小七采纳,获得10
6秒前
WSDD-ya完成签到,获得积分10
6秒前
Alicia完成签到,获得积分10
7秒前
草壁米完成签到,获得积分10
7秒前
科研小白书hz完成签到 ,获得积分10
10秒前
唱唱哟完成签到 ,获得积分10
11秒前
qiao应助ZZ采纳,获得10
11秒前
lulalula完成签到,获得积分10
13秒前
Pengzhuhuai完成签到,获得积分10
13秒前
斯寜应助鼻揩了转去采纳,获得10
15秒前
阳光明明完成签到 ,获得积分10
15秒前
qiao应助ANON_TOKYO采纳,获得10
17秒前
粒子完成签到,获得积分10
22秒前
27秒前
立华奏完成签到,获得积分10
28秒前
yellowonion完成签到 ,获得积分10
30秒前
Orange应助称心寒松采纳,获得10
30秒前
仁爱柠檬完成签到,获得积分10
30秒前
谭凯文完成签到 ,获得积分10
32秒前
毕业发布了新的文献求助10
34秒前
35秒前
baobaonaixi完成签到,获得积分10
37秒前
17完成签到 ,获得积分10
38秒前
shjyang发布了新的文献求助10
40秒前
41秒前
41秒前
42秒前
隐形曼青应助北秋颐采纳,获得10
43秒前
称心寒松发布了新的文献求助10
44秒前
略略完成签到,获得积分10
45秒前
wayne完成签到 ,获得积分10
46秒前
46秒前
潘贤铖发布了新的文献求助10
50秒前
Orange应助科研通管家采纳,获得10
51秒前
领导范儿应助科研通管家采纳,获得10
51秒前
52秒前
Ava应助科研通管家采纳,获得10
52秒前
乐乐应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781313
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228480
捐赠科研通 3041848
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751