Investigating bromide incorporation factor (BIF) and model development for predicting THMs in drinking water using machine learning

溴仿 三卤甲烷 化学 氯仿 溴化物 天然有机质 环境化学 水处理 溶解有机碳 有机质 环境工程 色谱法 环境科学 有机化学
作者
Shakhawat Chowdhury,Karim Sattar,Syed Masiur Rahman
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:906: 167595-167595 被引量:1
标识
DOI:10.1016/j.scitotenv.2023.167595
摘要

Many disinfection byproducts (DBPs) in drinking water can pose cancer risks to humans while several DBPs including trihalomethanes are typically regulated. Although trihalomethanes are regulated, brominated fractions (bromodichloromethane, dibromochloromethane and bromoform) are more toxic to humans than the chlorinated ones (chloroform). To date, >100 models have been reported to predict DBPs. However, models to predict individual trihalomethanes are very limited, indicating the needs of such models. Various factors including natural organic matter (NOM), bromide ions (Br-), disinfectants (e.g., chlorine dose), pH, temperature and reaction time affect the formation and distribution of trihalomethanes in drinking water. In this study, NOM was fractionated into four groups based on the molecular weight (MW) cutoff values and their respective contributions to dissolved organic carbon (DOC), trihalomethanes and bromide incorporation factors (BIF) were investigated. Models were developed for predicting chloroform, bromodichloromethane, dibromochloromethane, bromoform and trihalomethanes. Three machine learning techniques: Support Vector Regressor (SVR), Random Forest Regressor (RFR) and Artificial Neural Networks (ANN) were adopted for training and testing the models. The normalized BIFs were in the ranges of 0.08-0.16 and 0.07-0.15 per mg/L of DOC for pH 6.0 and 8.5 respectively. The BIFs were higher for lower pH and MW values while increase of bromide to chlorine ratios increased BIFs. The models showed excellent predictive performances in training (R2 = 0.889-0.998) and testing (R2 = 0.870-0.988) datasets. The SVR and RFR models showed the best performances with lower RMSE and MAE in most cases. These models can be used to better control different trihalomethanes in drinking water to maintain regulatory compliance, and to minimize the risks to humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Percy发布了新的文献求助10
刚刚
ding应助学术小白采纳,获得30
2秒前
JiangXinyu完成签到,获得积分10
3秒前
nan应助teni采纳,获得10
3秒前
3秒前
NOS完成签到 ,获得积分10
5秒前
6秒前
地蛋发布了新的文献求助10
8秒前
小幸运发布了新的文献求助30
9秒前
9秒前
10秒前
李健应助大白采纳,获得10
11秒前
瘦瘦的艳发布了新的文献求助10
11秒前
爆米花应助吴雨采纳,获得10
11秒前
小巧初柔发布了新的文献求助10
12秒前
吕思温发布了新的文献求助10
13秒前
万能图书馆应助付品聪采纳,获得10
14秒前
魈玖完成签到,获得积分10
14秒前
15秒前
余允怜完成签到,获得积分10
15秒前
Owen应助LILILI采纳,获得10
15秒前
17秒前
17秒前
17秒前
烟花应助小王梓采纳,获得10
17秒前
xcgh应助drtianyunhong采纳,获得10
18秒前
研友_VZG7GZ应助三杯虾采纳,获得30
19秒前
19秒前
地蛋完成签到,获得积分10
20秒前
木木完成签到,获得积分10
20秒前
RPG完成签到,获得积分10
21秒前
曾经的听枫完成签到 ,获得积分20
21秒前
21秒前
21秒前
大模型应助huche采纳,获得10
22秒前
付品聪发布了新的文献求助10
22秒前
22秒前
WenhaoLi发布了新的文献求助30
22秒前
称心妙竹应助槐椟采纳,获得20
23秒前
djyu发布了新的文献求助10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207687
求助须知:如何正确求助?哪些是违规求助? 4385504
关于积分的说明 13657249
捐赠科研通 4244180
什么是DOI,文献DOI怎么找? 2328661
邀请新用户注册赠送积分活动 1326328
关于科研通互助平台的介绍 1278500