Investigating bromide incorporation factor (BIF) and model development for predicting THMs in drinking water using machine learning

溴仿 三卤甲烷 化学 氯仿 溴化物 天然有机质 环境化学 水处理 溶解有机碳 有机质 环境工程 色谱法 环境科学 有机化学
作者
Shakhawat Chowdhury,Karim Sattar,Syed Masiur Rahman
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:906: 167595-167595 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.167595
摘要

Many disinfection byproducts (DBPs) in drinking water can pose cancer risks to humans while several DBPs including trihalomethanes are typically regulated. Although trihalomethanes are regulated, brominated fractions (bromodichloromethane, dibromochloromethane and bromoform) are more toxic to humans than the chlorinated ones (chloroform). To date, >100 models have been reported to predict DBPs. However, models to predict individual trihalomethanes are very limited, indicating the needs of such models. Various factors including natural organic matter (NOM), bromide ions (Br-), disinfectants (e.g., chlorine dose), pH, temperature and reaction time affect the formation and distribution of trihalomethanes in drinking water. In this study, NOM was fractionated into four groups based on the molecular weight (MW) cutoff values and their respective contributions to dissolved organic carbon (DOC), trihalomethanes and bromide incorporation factors (BIF) were investigated. Models were developed for predicting chloroform, bromodichloromethane, dibromochloromethane, bromoform and trihalomethanes. Three machine learning techniques: Support Vector Regressor (SVR), Random Forest Regressor (RFR) and Artificial Neural Networks (ANN) were adopted for training and testing the models. The normalized BIFs were in the ranges of 0.08-0.16 and 0.07-0.15 per mg/L of DOC for pH 6.0 and 8.5 respectively. The BIFs were higher for lower pH and MW values while increase of bromide to chlorine ratios increased BIFs. The models showed excellent predictive performances in training (R2 = 0.889-0.998) and testing (R2 = 0.870-0.988) datasets. The SVR and RFR models showed the best performances with lower RMSE and MAE in most cases. These models can be used to better control different trihalomethanes in drinking water to maintain regulatory compliance, and to minimize the risks to humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyh2030完成签到,获得积分10
1秒前
文静听南完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
LG关闭了LG文献求助
4秒前
4秒前
完美世界应助Leehowie采纳,获得10
5秒前
5秒前
Nine完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
万能图书馆应助mdmdd采纳,获得10
7秒前
7秒前
小巴德完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
yinyanlong发布了新的文献求助10
9秒前
yangyangyang完成签到,获得积分10
9秒前
踏实青槐发布了新的文献求助10
11秒前
hanliulaixi发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
pluto应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
wzzz应助科研通管家采纳,获得10
12秒前
wzzz应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752005
求助须知:如何正确求助?哪些是违规求助? 5472107
关于积分的说明 15372690
捐赠科研通 4891243
什么是DOI,文献DOI怎么找? 2630235
邀请新用户注册赠送积分活动 1578409
关于科研通互助平台的介绍 1534398