Investigating bromide incorporation factor (BIF) and model development for predicting THMs in drinking water using machine learning

溴仿 三卤甲烷 化学 氯仿 溴化物 天然有机质 环境化学 水处理 溶解有机碳 有机质 环境工程 色谱法 环境科学 有机化学
作者
Shakhawat Chowdhury,Karim Sattar,Syed Masiur Rahman
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:906: 167595-167595 被引量:1
标识
DOI:10.1016/j.scitotenv.2023.167595
摘要

Many disinfection byproducts (DBPs) in drinking water can pose cancer risks to humans while several DBPs including trihalomethanes are typically regulated. Although trihalomethanes are regulated, brominated fractions (bromodichloromethane, dibromochloromethane and bromoform) are more toxic to humans than the chlorinated ones (chloroform). To date, >100 models have been reported to predict DBPs. However, models to predict individual trihalomethanes are very limited, indicating the needs of such models. Various factors including natural organic matter (NOM), bromide ions (Br-), disinfectants (e.g., chlorine dose), pH, temperature and reaction time affect the formation and distribution of trihalomethanes in drinking water. In this study, NOM was fractionated into four groups based on the molecular weight (MW) cutoff values and their respective contributions to dissolved organic carbon (DOC), trihalomethanes and bromide incorporation factors (BIF) were investigated. Models were developed for predicting chloroform, bromodichloromethane, dibromochloromethane, bromoform and trihalomethanes. Three machine learning techniques: Support Vector Regressor (SVR), Random Forest Regressor (RFR) and Artificial Neural Networks (ANN) were adopted for training and testing the models. The normalized BIFs were in the ranges of 0.08-0.16 and 0.07-0.15 per mg/L of DOC for pH 6.0 and 8.5 respectively. The BIFs were higher for lower pH and MW values while increase of bromide to chlorine ratios increased BIFs. The models showed excellent predictive performances in training (R2 = 0.889-0.998) and testing (R2 = 0.870-0.988) datasets. The SVR and RFR models showed the best performances with lower RMSE and MAE in most cases. These models can be used to better control different trihalomethanes in drinking water to maintain regulatory compliance, and to minimize the risks to humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助长情的昊焱采纳,获得10
1秒前
简单刺猬发布了新的文献求助10
1秒前
fei完成签到 ,获得积分10
3秒前
5秒前
嘉嘉发布了新的文献求助10
6秒前
华仔应助顺心牛排采纳,获得10
7秒前
小天发布了新的文献求助10
12秒前
tonstark完成签到,获得积分10
14秒前
FashionBoy应助刘123采纳,获得10
17秒前
科目三应助黎小静采纳,获得10
18秒前
20秒前
bc应助科研通管家采纳,获得30
20秒前
bc应助科研通管家采纳,获得30
21秒前
冰魂应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
bc应助科研通管家采纳,获得30
21秒前
24秒前
WSH发布了新的文献求助10
24秒前
26秒前
26秒前
刘123发布了新的文献求助10
28秒前
29秒前
黎小静发布了新的文献求助10
29秒前
毛毛妈发布了新的文献求助10
32秒前
斯文败类应助爱听歌笑寒采纳,获得10
32秒前
SciGPT应助毛不二采纳,获得10
33秒前
wanci应助核桃nut采纳,获得10
36秒前
36秒前
bkagyin应助SCI采纳,获得10
41秒前
41秒前
hh完成签到 ,获得积分10
45秒前
46秒前
zho应助毛毛妈采纳,获得10
46秒前
48秒前
端庄的小翠完成签到 ,获得积分10
50秒前
SCI发布了新的文献求助10
51秒前
53秒前
57秒前
57秒前
小边发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385