Complete feature learning and consistent relation modeling for few-shot knowledge graph completion

计算机科学 人工智能 关系(数据库) 机器学习 特征(语言学) 特征学习 代表(政治) 图形 一般化 数据挖掘 理论计算机科学 数学 哲学 语言学 政治 政治学 法学 数学分析
作者
Jin Liu,ChongFeng Fan,Fengyu Zhou,XU Hui-juan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121725-121725 被引量:8
标识
DOI:10.1016/j.eswa.2023.121725
摘要

Few-shot knowledge graph completion focuses on predicting unseen facts of long-tail relations in knowledge graphs with only few reference sets. The key challenge for tackling this task is how to represent the complete entity features under low data regime conditions and further build the relation scoring function of the triplet for prediction. However, existing works mainly focus on aggregating entity representations and seriously ignore the process of consistent relation modeling, resulting in unsatisfactory performance on sparse neighbors and complex relations modeling. To address the issues, this paper designs a two-branch feature extractor to capture complementary and complete representation of entities for differentiating the few examples, where each branch focuses on diverse aspect of the entity features. Furthermore, we apply a diversity loss based on the minimization of cosine similarity is applied between the two-branch feature extractors to encourage the two-branch to learn complementary features. Conditioned on the entity features, we further incorporate the structural relation representation into the semantic relation learning to keep the consistent with triplet scoring function, and consider the consistency issue of various structural relation modeling between training and test generalization. Empirical results on two public benchmark datasets NELL-One and Wiki-One demonstrate that our approach outperforms the state-of-the-art results, with relative improvements on Hits@10 for 1-shot of 4.8% and 4.4%, respectively, and achieves new state-of-the-art results. Additionally, Extensive experiments also show proficiency in dealing with complex relations and sparse neighbors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qc应助Criminology34采纳,获得10
刚刚
欣新发布了新的文献求助10
1秒前
科研通AI6应助Jason采纳,获得30
1秒前
隋梦瑶完成签到,获得积分10
1秒前
cjf发布了新的文献求助10
2秒前
chenyunning完成签到,获得积分10
3秒前
在水一方应助kk采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
荡香醪完成签到,获得积分10
4秒前
5秒前
Jasper应助要减肥的丹云采纳,获得10
5秒前
笑哦完成签到,获得积分20
5秒前
晴朗完成签到,获得积分10
5秒前
黄钦清发布了新的文献求助10
8秒前
10秒前
12秒前
感动迎蕾完成签到,获得积分10
12秒前
赘婿应助新雨采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
17秒前
笑面客发布了新的文献求助10
19秒前
19秒前
浮游应助钱钱采纳,获得10
20秒前
20秒前
科研通AI5应助深情寻冬采纳,获得10
21秒前
22秒前
魔幻凡儿完成签到 ,获得积分10
23秒前
orixero应助十年采纳,获得10
24秒前
24秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
77777777发布了新的文献求助10
26秒前
JW完成签到,获得积分10
26秒前
28秒前
Waiting发布了新的文献求助10
30秒前
情怀应助沈睿采纳,获得10
31秒前
新雨发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849603
求助须知:如何正确求助?哪些是违规求助? 4148969
关于积分的说明 12851668
捐赠科研通 3896337
什么是DOI,文献DOI怎么找? 2141589
邀请新用户注册赠送积分活动 1161120
关于科研通互助平台的介绍 1061187