Outlier-Robust Extended Kalman Filtering for Bioinspired Integrated Navigation System

协方差 稳健性(进化) 全球导航卫星系统应用 协方差交集 计算机科学 卡尔曼滤波器 协方差矩阵 协方差矩阵的估计 离群值 算法 惯性测量装置 传感器融合 导航系统 全球定位系统 人工智能 数学 电信 生物化学 统计 化学 基因
作者
Zhenbing Qiu,Shanpeng Wang,Pengwei Hu,Lei Guo
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 5881-5894 被引量:11
标识
DOI:10.1109/tase.2023.3319508
摘要

This article proposes a set of novel attitude estimation algorithms for a bioinspired integrated navigation system including an insect-inspired polarization sensor, an inertial measurement unit, and a global navigation satellite system (GNSS). In particular, the biomimetic polarization sensor introduced as the new type of navigation component has an orientation performance comparable to that of a magnetometer. Moreover, this small and light sensor is immune to magnetic interference, making it highly suitable for orientation in unmanned aerial vehicles (UAVs). However, inaccurate modeling, unknown parameters, and unknown statistical characteristics of noise are common problems with the orientation solution of the sensor. Therefore, we theoretically compare various adaptive and robust filtering algorithms, select the best error prediction covariance and noise covariance correction schemes, introduce Kalman smoothers and approximate inference methods, and then propose two outlier-robust algorithms. This approach can suppress multiple outliers from the two steps of prediction and estimation. The polarization sensor and GNSS update the state and error covariance according to the asynchronous fusion mode. The prediction error covariance, the polarization measurement noise covariance, and the GNSS measurement noise covariance are approximately estimated by the variational inference method. To validate the performance of our algorithms, we collected a set of multi-rotor UAV flight data for testing. Experimental results show that the proposed algorithms have better robustness performance than existing state-of-the-art algorithms. Note to Practitioners —This article was motivated by Bioinspired autonomous navigation systems suffering from inaccurate modeling, unknown parameters, and noise with unknown statistical properties. Subject to the large uncertainty in the flight of the UAV, the traditional filtering algorithm has slow convergence or even divergence when processing such actual data. In this article, we first establish a unified state estimation framework. Then, we mathematically describe correction strategies for prediction error covariance and measurement noise covariance. Considering the need for real-time estimation, we adopted the extended Kalman filter. However, this introduces a truncation error, then, Rauch-Tung-Striebel smoothing is introduced to improve the linearized reference point. However, the role of robust filtering is limited, and the non-Gaussian state still exists. Finally, the approximate inference method is used to estimate the state. The proposed method integrates adaptability, robustness, reasoning, and smoothing, and is suitable for dealing with multi-source interference problems in multi-source information fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AKLIZE完成签到,获得积分10
刚刚
1秒前
dm11完成签到 ,获得积分10
2秒前
CipherSage应助混个毕业采纳,获得10
3秒前
Iamrobot发布了新的文献求助10
6秒前
大模型应助笑点低向雁采纳,获得10
7秒前
guard发布了新的文献求助10
14秒前
Iamrobot完成签到,获得积分20
14秒前
所所应助科研通管家采纳,获得20
15秒前
ccc2应助科研通管家采纳,获得50
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
吴兰田发布了新的文献求助10
19秒前
Pzj完成签到,获得积分10
26秒前
LL发布了新的文献求助10
27秒前
霍华淞发布了新的文献求助10
28秒前
30秒前
magiczhu完成签到,获得积分10
32秒前
LaTeXer应助井野浮采纳,获得50
32秒前
雅雅完成签到,获得积分10
34秒前
ANT完成签到 ,获得积分10
34秒前
35秒前
36秒前
橘子sungua完成签到,获得积分10
37秒前
monster完成签到 ,获得积分10
38秒前
阳光珍完成签到,获得积分10
38秒前
可爱的函函应助hantuo采纳,获得10
38秒前
搜集达人应助闲逛的木头采纳,获得10
39秒前
Ava应助hipig采纳,获得10
40秒前
41秒前
41秒前
团结完成签到 ,获得积分10
42秒前
无情小蘑菇完成签到 ,获得积分10
43秒前
43秒前
zorro3574完成签到,获得积分10
44秒前
VanishX发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4448659
求助须知:如何正确求助?哪些是违规求助? 3917311
关于积分的说明 12159770
捐赠科研通 3566796
什么是DOI,文献DOI怎么找? 1958687
邀请新用户注册赠送积分活动 998018
科研通“疑难数据库(出版商)”最低求助积分说明 893208