Autoscaled-Wavelet Convolutional Layer for Deep Learning-Based Side-Channel Analysis

计算机科学 深度学习 人工智能 小波 卷积神经网络 模式识别(心理学) 小波变换 连续小波变换 光谱图 机器学习 离散小波变换
作者
Daehyeon Bae,Dongjun Park,Gyusang Kim,Minsig Choi,Nayeon Lee,Hee Seok Kim,Seokhie Hong
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 95381-95395 被引量:3
标识
DOI:10.1109/access.2023.3311370
摘要

Continuous Wavelet Transform (CWT) is rarely used in the field of side-channel analysis due to problems related to parameter (wavelet scale) selection; There is no way to find the optimal wavelet scale other than an exhaustive search, and the resulting spectrogram analysis can introduce significant analysis complexity. However, a well-scaled CWT can improve the signal-to-noise ratio of side-channel signals, which can lead to better attack performance. And our insights suggest that there is scope for CWT and deep learning approaches to be combined, which could help the models to train more effectively while overcoming the problems of CWT. In this context, we propose a novel feature extraction layer that combines a CWT with a Convolutional Neural Network (CNN). The proposed method can leverage neural network training to automatically adjust a wavelet scale, which is a critical parameter of CWT. Furthermore, the proposed method can lead to performance improvements by enabling a deep learning model to perform on-the-fly multi-frequency analysis without any pre-processing. By bringing the two approaches together, we were able to overcome the limitations of CWT and improve the performance of deep learning-based side-channel analysis. As an experimental result using open dataset ASCAD, a de facto standard in deep learning-based side-channel analysis, we confirmed that the proposed method could improve the performance by inserting the proposed layer into existing state-of-the-art deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助嘿嘿哈嘿88采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助liu采纳,获得10
4秒前
5秒前
汉堡包应助森距离采纳,获得10
9秒前
冷静芹菜完成签到 ,获得积分10
10秒前
Survivor发布了新的文献求助10
12秒前
miketyson完成签到,获得积分10
12秒前
13秒前
15秒前
桐桐应助ouwenwen采纳,获得10
16秒前
Survivor完成签到,获得积分10
16秒前
xiami应助刘先生采纳,获得10
17秒前
HEAUBOOK应助无敌小汐采纳,获得10
17秒前
whilers完成签到,获得积分10
17秒前
阳光完成签到 ,获得积分10
17秒前
文安发布了新的文献求助10
18秒前
已过完成签到,获得积分10
18秒前
绚濑绘里家的东条希关注了科研通微信公众号
18秒前
雪花君完成签到,获得积分10
18秒前
19秒前
19秒前
乐观的忆枫完成签到,获得积分10
21秒前
22秒前
24秒前
皇甫藏鸟发布了新的文献求助10
24秒前
Lucas应助开心采纳,获得10
24秒前
25秒前
建丰完成签到,获得积分10
27秒前
万能图书馆应助Miya_han采纳,获得10
27秒前
27秒前
28秒前
28秒前
内向宛凝发布了新的文献求助10
29秒前
学术大王发布了新的文献求助10
29秒前
淡水痕发布了新的文献求助10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742