脑-机接口
构音障碍
计算机科学
接口(物质)
肌萎缩侧索硬化
语音识别
感觉运动皮层
辅助装置
增强和替代通信
脑电图
物理医学与康复
听力学
心理学
医学
神经科学
疾病
气泡
病理
最大气泡压力法
精神科
并行计算
作者
Shiyu Luo,Miguel Angrick,Christopher Coogan,Daniel N. Candrea,Kimberley R. Wyse-Sookoo,Samyak Shah,Qinwan Rabbani,Griffin Milsap,Alexander R. Weiss,William S. Anderson,Donna Tippett,Nicholas J. Maragakis,Lora Clawson,Mariska J. Vansteensel,Brock A. Wester,Francesco V. Tenore,Hynek Heřmanský,Matthew S. Fifer,Nick F. Ramsey,Nathan E. Crone
标识
DOI:10.1002/advs.202304853
摘要
Abstract Brain‐computer interfaces (BCIs) can be used to control assistive devices by patients with neurological disorders like amyotrophic lateral sclerosis (ALS) that limit speech and movement. For assistive control, it is desirable for BCI systems to be accurate and reliable, preferably with minimal setup time. In this study, a participant with severe dysarthria due to ALS operates computer applications with six intuitive speech commands via a chronic electrocorticographic (ECoG) implant over the ventral sensorimotor cortex. Speech commands are accurately detected and decoded (median accuracy: 90.59%) throughout a 3‐month study period without model retraining or recalibration. Use of the BCI does not require exogenous timing cues, enabling the participant to issue self‐paced commands at will. These results demonstrate that a chronically implanted ECoG‐based speech BCI can reliably control assistive devices over long time periods with only initial model training and calibration, supporting the feasibility of unassisted home use.
科研通智能强力驱动
Strongly Powered by AbleSci AI