Research related to the diagnosis of prostate cancer based on machine learning medical images: A review

前列腺癌 医学 前列腺 人工智能 医学物理学 癌症 医学影像学 放射科 计算机科学 内科学
作者
Xinyi Chen,Xiang Liu,Yuke Wu,Zhenglei Wang,Shuo Hong Wang
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:181: 105279-105279 被引量:1
标识
DOI:10.1016/j.ijmedinf.2023.105279
摘要

Prostate cancer is currently the second most prevalent cancer among men. Accurate diagnosis of prostate cancer can provide effective treatment for patients and greatly reduce mortality. The current medical imaging tools for screening prostate cancer are mainly MRI, CT and ultrasound. In the past 20 years, these medical imaging methods have made great progress with machine learning, especially the rise of deep learning has led to a wider application of artificial intelligence in the use of image-assisted diagnosis of prostate cancer. This review collected medical image processing methods, prostate and prostate cancer on MR images, CT images, and ultrasound images through search engines such as web of science, PubMed, and Google Scholar, including image pre-processing methods, segmentation of prostate gland on medical images, registration between prostate gland on different modal images, detection of prostate cancer lesions on the prostate. Through these collated papers, it is found that the current research on the diagnosis and staging of prostate cancer using machine learning and deep learning is in its infancy, and most of the existing studies are on the diagnosis of prostate cancer and classification of lesions, and the accuracy is low, with the best results having an accuracy of less than 0.95. There are fewer studies on staging. The research is mainly focused on MR images and much less on CT images, ultrasound images. Machine learning and deep learning combined with medical imaging have a broad application prospect for the diagnosis and staging of prostate cancer, but the research in this area still has more room for development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orange完成签到,获得积分10
刚刚
紫川应助愤怒的千凝采纳,获得10
刚刚
承诺信守完成签到,获得积分10
1秒前
1秒前
田様应助北极光采纳,获得10
1秒前
2秒前
RM关闭了RM文献求助
2秒前
2秒前
无花果应助背后梦安采纳,获得10
4秒前
艾森豪威尔完成签到 ,获得积分10
4秒前
李键刚完成签到,获得积分10
4秒前
xiaobai完成签到,获得积分10
5秒前
欣喜大地发布了新的文献求助10
5秒前
希望天下0贩的0应助wyc采纳,获得10
5秒前
情怀应助hui采纳,获得30
6秒前
快乐听南完成签到 ,获得积分10
6秒前
一只半夏完成签到,获得积分10
6秒前
6秒前
yeah发布了新的文献求助10
7秒前
搜集达人应助SHERRIDEN_采纳,获得10
10秒前
TT完成签到,获得积分10
11秒前
12秒前
稳重以冬发布了新的文献求助10
13秒前
13秒前
123456完成签到,获得积分10
14秒前
HEAUBOOK应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
HEAUBOOK应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
11哥应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791756
求助须知:如何正确求助?哪些是违规求助? 3336090
关于积分的说明 10278727
捐赠科研通 3052729
什么是DOI,文献DOI怎么找? 1675280
邀请新用户注册赠送积分活动 803318
科研通“疑难数据库(出版商)”最低求助积分说明 761165