Investigating the Identification and Spatial Distribution Characteristics of Camellia oleifera Plantations Using High-Resolution Imagery

油茶 山茶花 遥感 分割 鉴定(生物学) 计算机科学 人工智能 地理 植物 生物 计算机安全
作者
Yajing Li,Enping Yan,Jiawei Jiang,Dan Cao,Dengkui Mo
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (21): 5218-5218
标识
DOI:10.3390/rs15215218
摘要

Camellia oleifera is a vital economic crop of southern China. Accurate mapping and monitoring of Camellia oleifera plantations are essential for promoting sustainable operations within the Camellia oleifera industry. However, traditional remote sensing interpretation methods are no longer feasible for the large-scale extraction of plantation areas. This study proposes a novel deep learning-based method that utilizes GF-2 remote sensing imagery to achieve precise mapping and efficient monitoring of Camellia oleifera plantations. First, we conducted a comparative analysis of the performance of various semantic segmentation models using a self-compiled dataset of Camellia oleifera plantations. Subsequently, we proceeded to validate the prediction results obtained from the most effective deep-learning network model for Camellia oleifera plantations in Hengyang City. Finally, we incorporated DEM data to analyze the spatial distribution patterns. The findings indicate that the U-Net++ network model outperforms other semantic segmentation methods when applied to our self-generated dataset of Camellia oleifera plantations. It achieves a recall rate of 0.89, a precision rate of 0.92, and an mIOU of 0.83, demonstrating the effectiveness of the proposed method in identifying and monitoring Camellia oleifera plantations. By combining the predicted results with the data from DEM, we discovered that these plantations are typically situated at elevations ranging from 50 to 200 m, with slopes below 25°, and facing south or southeast. Moreover, a significant positive spatial correlation and clustering phenomenon are observed among the townships in Hengyang City. The method proposed in this study facilitates rapid and precise identification and monitoring of Camellia oleifera plantations, offering significant theoretical support and a scientific foundation for the management and ecological conservation of Camellia oleifera plantations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子发布了新的文献求助10
1秒前
zhangyk完成签到,获得积分10
1秒前
程豪完成签到,获得积分10
2秒前
酷炫的鸡翅完成签到,获得积分10
3秒前
charles发布了新的文献求助10
4秒前
hhhhwy发布了新的文献求助20
5秒前
zhangyk发布了新的文献求助10
5秒前
5秒前
Owen应助whyzz采纳,获得10
6秒前
李健应助qq.com采纳,获得10
6秒前
6秒前
领导范儿应助喵喵喵采纳,获得10
7秒前
柚子完成签到,获得积分10
8秒前
小韩发布了新的文献求助10
9秒前
ylq关闭了ylq文献求助
10秒前
10秒前
科研通AI5应助丰富的秋烟采纳,获得10
11秒前
11秒前
燕儿发布了新的文献求助10
12秒前
李健应助nana2hao采纳,获得10
13秒前
小莫完成签到,获得积分20
14秒前
16秒前
爱吃粑粑发布了新的文献求助10
17秒前
小黑子发布了新的文献求助10
17秒前
17秒前
Cc完成签到,获得积分10
18秒前
结实尔珍完成签到,获得积分10
20秒前
家养浩发布了新的文献求助10
20秒前
就晚安喽完成签到 ,获得积分10
21秒前
Gilana发布了新的文献求助10
21秒前
21秒前
21秒前
科目三应助zhangyk采纳,获得10
23秒前
隐形曼青应助小韩采纳,获得10
23秒前
ylq关闭了ylq文献求助
23秒前
23秒前
24秒前
GG发布了新的文献求助10
25秒前
小马甲应助瓜子采纳,获得10
25秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818366
求助须知:如何正确求助?哪些是违规求助? 3361517
关于积分的说明 10413139
捐赠科研通 3079768
什么是DOI,文献DOI怎么找? 1692743
邀请新用户注册赠送积分活动 814539
科研通“疑难数据库(出版商)”最低求助积分说明 768193