Enhanced-TransUNet for ultrasound segmentation of thyroid nodules

甲状腺结节 分割 超声波 计算机科学 人工智能 甲状腺 医学 放射科 内科学
作者
Alper Özcan,Ömür Tosun,Emrah Dönmez,Muhammad Sanwal
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:95: 106472-106472 被引量:7
标识
DOI:10.1016/j.bspc.2024.106472
摘要

Medical image segmentation plays a key role in the early diagnosis and treatment of medical diseases. Thyroid nodule segmentation is a critical step in early thyroid cancer identification. Accurately segmenting thyroid nodule areas from ultrasound images is critical for clinical diagnosis and maintaining good health. Because of the fragile borders of ultrasound images and the complicated structure of thyroid tissue, it is difficult to correctly separate the delicate outlines of thyroid nodules to provide adequate segmentation findings, since they either cannot establish exact edges or segment smaller parts. The segmentation of thyroid nodule images presents some fundamental difficulties. First, the intrinsic locality of convolutional neural network models places constraints on their ability to capture information about the whole context. Second, the size of the data sets used for thyroid nodule segmentation frequently makes overfitting more likely. Finally, low-level characteristics that are important in displaying thyroid borders eventually disappear throughout the feature encoding process. We provide an effective model called Enhanced-TransUNet for thyroid nodule image segmentation to overcome these difficulties. The Transformer and UNet concepts are combined in Enhanced-TransUNet. While the UNet can successfully segregate tiny items, the Transformer can collect information about the overall environment. In order to condense superfluous characteristics and lower the chance of overfitting, Enhanced-TransUNet also makes use of an information bottleneck. Comparing our model to contemporary CNN or UNET based models, experimental findings on the TN3K and DDTI datasets for brain tumor segmentation tasks show that our model gets equivalent or better results. For the two datasets, the average Dice Score and HD95 are 82.92, 95.45, and 13.19, 1.09, respectively. Overall, the Enhanced-TransUNet model for thyroid nodule image segmentation is promising. Even with weak edges and a complicated tissue structure, it can precisely segment thyroid nodules in ultrasound pictures. Due to its usage of the information bottleneck, Enhanced-TransUNet is also less prone to overfitting than other models. As a result, an AI-based decision support system based on this model can be built to reduce workload and misdiagnosis. This system has significant potential for clinical application by radiologists and surgeons, which can increase clinical diagnostic accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助呆萌的语芹采纳,获得50
3秒前
NexusExplorer应助Ryan采纳,获得10
4秒前
5秒前
GS发布了新的文献求助50
6秒前
坤坤发布了新的文献求助10
12秒前
幽凡完成签到 ,获得积分10
14秒前
16秒前
CodeCraft应助坤坤采纳,获得10
17秒前
18秒前
未知数完成签到,获得积分20
20秒前
关天木发布了新的文献求助10
20秒前
21秒前
22秒前
坤坤完成签到,获得积分10
23秒前
QL发布了新的文献求助10
24秒前
25秒前
CHENZHIHUA发布了新的文献求助10
25秒前
26秒前
小露发布了新的文献求助10
28秒前
29秒前
hhh完成签到,获得积分10
30秒前
31秒前
十三完成签到 ,获得积分10
33秒前
CHENZHIHUA完成签到,获得积分20
33秒前
dennisysz发布了新的文献求助10
34秒前
玉灵子发布了新的文献求助10
38秒前
ziji驳回了Akim应助
39秒前
小露完成签到,获得积分10
40秒前
淡淡半莲完成签到 ,获得积分10
41秒前
1111应助mingpu采纳,获得10
42秒前
43秒前
Owen应助玉灵子采纳,获得10
45秒前
hebrews完成签到,获得积分10
47秒前
shihan1231发布了新的文献求助10
47秒前
ah爱科研发布了新的文献求助10
50秒前
苗条的一一完成签到 ,获得积分10
50秒前
11111111111111完成签到,获得积分20
51秒前
ah爱科研完成签到,获得积分10
56秒前
脑洞疼应助小雪采纳,获得10
57秒前
英俊的铭应助robalance采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103