A deep learning algorithm to identify carotid plaques and assess their stability

医学 超声波 颈动脉 卷积神经网络 冲程(发动机) 深度学习 颈动脉超声检查 人工智能 放射科 曼惠特尼U检验 算法 内科学 计算机科学 机械工程 工程类
作者
Lan He,Zekun Yang,Yudong Wang,Weidao Chen,Le Diao,Yitong Wang,Wei Yuan,Li Xu,Ying Zhang,Yong‐Ming He,E. Shen
出处
期刊:Frontiers in artificial intelligence [Frontiers Media]
卷期号:7 被引量:3
标识
DOI:10.3389/frai.2024.1321884
摘要

Background Carotid plaques are major risk factors for stroke. Carotid ultrasound can help to assess the risk and incidence rate of stroke. However, large-scale carotid artery screening is time-consuming and laborious, the diagnostic results inevitably involve the subjectivity of the diagnostician to a certain extent. Deep learning demonstrates the ability to solve the aforementioned challenges. Thus, we attempted to develop an automated algorithm to provide a more consistent and objective diagnostic method and to identify the presence and stability of carotid plaques using deep learning. Methods A total of 3,860 ultrasound images from 1,339 participants who underwent carotid plaque assessment between January 2021 and March 2023 at the Shanghai Eighth People’s Hospital were divided into a 4:1 ratio for training and internal testing. The external test included 1,564 ultrasound images from 674 participants who underwent carotid plaque assessment between January 2022 and May 2023 at Xinhua Hospital affiliated with Dalian University. Deep learning algorithms, based on the fusion of a bilinear convolutional neural network with a residual neural network (BCNN-ResNet), were used for modeling to detect carotid plaques and assess plaque stability. We chose AUC as the main evaluation index, along with accuracy, sensitivity, and specificity as auxiliary evaluation indices. Results Modeling for detecting carotid plaques involved training and internal testing on 1,291 ultrasound images, with 617 images showing plaques and 674 without plaques. The external test comprised 470 ultrasound images, including 321 images with plaques and 149 without. Modeling for assessing plaque stability involved training and internal testing on 764 ultrasound images, consisting of 494 images with unstable plaques and 270 with stable plaques. The external test was composed of 279 ultrasound images, including 197 images with unstable plaques and 82 with stable plaques. For the task of identifying the presence of carotid plaques, our model achieved an AUC of 0.989 (95% CI: 0.840, 0.998) with a sensitivity of 93.2% and a specificity of 99.21% on the internal test. On the external test, the AUC was 0.951 (95% CI: 0.962, 0.939) with a sensitivity of 95.3% and a specificity of 82.24%. For the task of identifying the stability of carotid plaques, our model achieved an AUC of 0.896 (95% CI: 0.865, 0.922) on the internal test with a sensitivity of 81.63% and a specificity of 87.27%. On the external test, the AUC was 0.854 (95% CI: 0.889, 0.830) with a sensitivity of 68.52% and a specificity of 89.49%. Conclusion Deep learning using BCNN-ResNet algorithms based on routine ultrasound images could be useful for detecting carotid plaques and assessing plaque instability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jbdjxnixj完成签到,获得积分10
刚刚
1秒前
郭女侠在江湖完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助斯文问旋采纳,获得30
5秒前
hyishu发布了新的文献求助10
5秒前
大模型应助小炊采纳,获得10
6秒前
糕糕完成签到,获得积分10
8秒前
卡卡发布了新的文献求助20
9秒前
9秒前
念安完成签到,获得积分10
9秒前
hu完成签到,获得积分10
10秒前
10秒前
故酒应助ooooobama采纳,获得20
11秒前
李金舟发布了新的文献求助30
11秒前
霜序完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
喻世界发布了新的文献求助10
12秒前
12秒前
Akihiiiii发布了新的文献求助10
12秒前
13秒前
林lin完成签到,获得积分10
15秒前
酷炫念柏发布了新的文献求助20
15秒前
星辰大海应助qyk采纳,获得10
15秒前
15秒前
解语花发布了新的文献求助10
17秒前
丘比特应助萱瑄爸爸采纳,获得10
17秒前
cxl完成签到,获得积分20
17秒前
彭彭发布了新的文献求助50
18秒前
活泼忆丹发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
林lin发布了新的文献求助10
20秒前
yuan完成签到,获得积分10
20秒前
稳稳完成签到,获得积分10
21秒前
21秒前
哇塞发布了新的文献求助10
22秒前
吴溪月完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016248
求助须知:如何正确求助?哪些是违规求助? 4256302
关于积分的说明 13264360
捐赠科研通 4060256
什么是DOI,文献DOI怎么找? 2220809
邀请新用户注册赠送积分活动 1230053
关于科研通互助平台的介绍 1152671