A novel structure adaptive discrete grey Bernoulli model and its application in renewable energy power generation prediction

计算机科学 伯努利原理 可再生能源 功率(物理) 风力发电 能量(信号处理) 数学优化 人工智能 数学 电气工程 统计 物理 量子力学 工程类 航空航天工程
作者
Yong Wang,Rui Yang,Lang Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124481-124481 被引量:3
标识
DOI:10.1016/j.eswa.2024.124481
摘要

Currently, the renewable energy power generation industry has entered a new stage, and accurate renewable energy power generation prediction is of great significance for the strategic planning of energy systems. However, renewable energy power generation data is characterized by nonlinearity and poor information, which brings challenges to accurately predict its development trend. Thus, this paper proposes a novel discrete grey Bernoulli model based on the spiral structure accumulated generating operator to deal with this problem. The spiral structure accumulated generating operator is introduced into the grey model to realize the effective utilization of renewable energy data information. Meanwhile, with the introduction of time delay structure, periodic structure and Bernoulli structure, the novel model can effectively characterize the nonlinearity, volatility, and time lag information between economic growth and energy development of renewable energy data. In addition, using the Differential Evolution optimization (DE) algorithm for nonlinear parameter optimization can effectively improve the stability and accuracy of the model, and also makes the model have the ability of structural self-adaptation. Finally, the new model was used to predict the bioenergy and wind power generation data. Based on comparative experiments and grey correlation analysis, the predictive performance of the novel model is verified, and the prediction results are highly correlated with those of authoritative organization. The experimental results show that the novel model is an effective predictive tool for renewable energy generation, which is an important reference value for energy development decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wen完成签到 ,获得积分10
1秒前
wyh295352318完成签到 ,获得积分10
4秒前
weng完成签到,获得积分10
4秒前
草莓完成签到,获得积分10
5秒前
真真完成签到 ,获得积分10
11秒前
courage完成签到,获得积分10
14秒前
15秒前
joe完成签到 ,获得积分0
15秒前
快乐的完成签到 ,获得积分10
17秒前
21秒前
捉一只小鱼完成签到 ,获得积分10
22秒前
香蕉觅云应助阿尔法贝塔采纳,获得10
22秒前
健壮听筠发布了新的文献求助10
26秒前
眠眠清完成签到 ,获得积分10
28秒前
29秒前
杨抠脚完成签到,获得积分10
31秒前
实验体8567号完成签到,获得积分10
33秒前
33秒前
Clover完成签到 ,获得积分10
39秒前
无花果应助健壮听筠采纳,获得10
41秒前
科研通AI5应助贺知什么书采纳,获得10
49秒前
仁和完成签到,获得积分10
55秒前
科研通AI5应助HiNDT采纳,获得10
59秒前
明亮的尔竹完成签到,获得积分10
1分钟前
1分钟前
1分钟前
852应助一个小胖子采纳,获得10
1分钟前
sdfdzhang完成签到 ,获得积分10
1分钟前
lym97完成签到 ,获得积分10
1分钟前
eee应助阿辉采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
俊逸的白梦完成签到 ,获得积分0
1分钟前
23333完成签到,获得积分10
1分钟前
学习完成签到 ,获得积分10
1分钟前
科科通通完成签到,获得积分10
1分钟前
1分钟前
小小咸鱼完成签到 ,获得积分10
1分钟前
1分钟前
优雅的帅哥完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321607
关于积分的说明 10206344
捐赠科研通 3036668
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797424
科研通“疑难数据库(出版商)”最低求助积分说明 757839