已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large language models for life cycle assessments: Opportunities, challenges, and risks

持续性 生命周期评估 包裹体(矿物) 过程(计算) 风险分析(工程) 可持续发展 计算机科学 生产(经济) 业务 心理学 经济 政治学 宏观经济学 操作系统 法学 生物 社会心理学 生态学
作者
Nathan Preuss,Abdulelah S. Alshehri,Fengqi You
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:466: 142824-142824 被引量:8
标识
DOI:10.1016/j.jclepro.2024.142824
摘要

Because sustainability remains a wicked problem, more sophisticated tools need to be applied to identify better solutions in a more efficient manner and align with the 11th, 12th, and 13th sustainable development goals: sustainable cities and communities, responsible consumption and production, and climate action. To ease the burdens of conducting sustainability studies, especially life cycle assessments (LCA), practitioners may consider integrating large language models (LLM) into LCAs. This emerging application may offer some advantages due to the capability of these models to generate and process text quickly and efficiently, decreasing the time it takes to complete an LCA and increasing the accessibility of LCAs. In this perspective, we assess the ability of LLMs to complete LCA tasks and encourage the LCA community to study the potential strategies for enhancing the integration of LLMs in LCA methodologies and collaborate to develop standards for responsible use. Because of these advantages, LLMs show promise for life cycle inventory data collection and interpreting the life cycle impact assessment. Challenges arise primarily from the inclusion of hallucinations in the content generated by the LLM, which can be mitigated if the LCA practitioner uses prompt engineering techniques. Moreover, the risk that models cannot take responsibility for generated content can be ameliorated by having the LCA practitioner carefully review the LLM output and take responsibility for decisions made based on the generated content. So long as appropriate steps are taken to overcome the challenges and risks of using of LLMs for LCA, the opportunities presented by integrating the generative AI models can streamline the LCA process and result in significant benefits for the LCA practitioner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kailiuwang完成签到,获得积分10
1秒前
善学以致用应助yuxixi采纳,获得10
2秒前
壮观问寒完成签到,获得积分10
2秒前
天天快乐应助ChenYX采纳,获得10
3秒前
FashionBoy应助xxxksk采纳,获得30
3秒前
wy发布了新的文献求助30
4秒前
Qin发布了新的文献求助10
6秒前
小二郎应助carrieschen采纳,获得10
8秒前
8秒前
开放剑鬼完成签到,获得积分10
9秒前
10秒前
小王完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
方远锋完成签到,获得积分10
13秒前
路旁小白发布了新的文献求助10
14秒前
15秒前
liverbool完成签到,获得积分10
16秒前
彭于晏应助pywangsmmu92采纳,获得10
17秒前
黄sir发布了新的文献求助10
17秒前
归海剑封发布了新的文献求助10
17秒前
18秒前
19秒前
ZLY发布了新的文献求助10
19秒前
gy发布了新的文献求助10
21秒前
22秒前
22秒前
123发布了新的文献求助10
24秒前
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得20
25秒前
coolkid应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得30
25秒前
ding应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
26秒前
ZLY完成签到,获得积分10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843083
求助须知:如何正确求助?哪些是违规求助? 3385237
关于积分的说明 10539759
捐赠科研通 3105874
什么是DOI,文献DOI怎么找? 1710691
邀请新用户注册赠送积分活动 823719
科研通“疑难数据库(出版商)”最低求助积分说明 774216