Iterative Reconstruction: State-of-the-Art and Future Perspectives

医学 国家(计算机科学) 医学物理学 计算机科学 算法
作者
Gisella Guido,Michela Polici,Ilaria Nacci,Fernando Bozzi,Domenico De Santis,Nicolò Ubaldi,Tiziano Polidori,Marta Zerunian,Benedetta Bracci,Andrea Laghi,Damiano Caruso
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (2): 244-254 被引量:16
标识
DOI:10.1097/rct.0000000000001401
摘要

Abstract Image reconstruction processing in computed tomography (CT) has evolved tremendously since its creation, succeeding at optimizing radiation dose while maintaining adequate image quality. Computed tomography vendors have developed and implemented various technical advances, such as automatic noise reduction filters, automatic exposure control, and refined imaging reconstruction algorithms. Focusing on imaging reconstruction, filtered back-projection has represented the standard reconstruction algorithm for over 3 decades, obtaining adequate image quality at standard radiation dose exposures. To overcome filtered back-projection reconstruction flaws in low-dose CT data sets, advanced iterative reconstruction algorithms consisting of either backward projection or both backward and forward projections have been developed, with the goal to enable low-dose CT acquisitions with high image quality. Iterative reconstruction techniques play a key role in routine workflow implementation (eg, screening protocols, vascular and pediatric applications), in quantitative CT imaging applications, and in dose exposure limitation in oncologic patients. Therefore, this review aims to provide an overview of the technical principles and the main clinical application of iterative reconstruction algorithms, focusing on the strengths and weaknesses, in addition to integrating future perspectives in the new era of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
乐空思应助许多多采纳,获得30
2秒前
韩半仙完成签到,获得积分20
2秒前
zjl完成签到,获得积分10
3秒前
3秒前
harry应助LSPR采纳,获得20
4秒前
dyk发布了新的文献求助30
4秒前
muyi发布了新的文献求助10
4秒前
曲七七完成签到,获得积分10
4秒前
司忆应助yyy采纳,获得10
4秒前
刘厚麟发布了新的文献求助10
4秒前
5秒前
李健应助hongw1980采纳,获得10
5秒前
5秒前
6秒前
6秒前
斯文败类应助泡泡老爷车采纳,获得10
6秒前
zjl发布了新的文献求助10
6秒前
wang应助zhuzhu采纳,获得10
7秒前
8秒前
糊涂pipi完成签到 ,获得积分10
8秒前
任性初夏完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
脑洞疼应助脑洞养鲸鱼采纳,获得10
8秒前
aixue发布了新的文献求助10
9秒前
wanci应助兴奋的千筹采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
smottom应助rita采纳,获得10
11秒前
科研通AI6应助XCL采纳,获得10
11秒前
LEE发布了新的文献求助10
11秒前
袋鼠发布了新的文献求助10
12秒前
希望天下0贩的0应助叶子采纳,获得10
13秒前
安嫔完成签到 ,获得积分10
13秒前
13秒前
香蕉觅云应助雨碎寒江采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668461
求助须知:如何正确求助?哪些是违规求助? 4890899
关于积分的说明 15124429
捐赠科研通 4827351
什么是DOI,文献DOI怎么找? 2584580
邀请新用户注册赠送积分活动 1538453
关于科研通互助平台的介绍 1496742