The Share-a-Ride Problem with mixed ride-hailing and logistic vehicles

业务 逻辑回归 运输工程 计算机科学 工程类 机器学习
作者
Ji Wen,Shenglin Liu,Han Ke,Tao Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.11944
摘要

This study explores the potential of using ride-hailing vehicles (RVs) for integrated passenger and freight transport based on shared mobility. In this crowd-sourced mode, ride-hailing platforms can profit from parcel delivery services, and logistics companies can reduce operational costs by utilizing the capacities of RVs. The Share-a-Ride problem with ride-hailing and logistic vehicles (SARP-RL) determines the number of logistic vehicles (LVs) and the assignment of passenger/parcel requests to RVs and LVs, aiming at maximizing the total RV profits and minimizing logistic costs. An exact solution framework is proposed by (1) generating a feasible trip that serves a given set of requests at maximal profits; (2) generating all feasible trips for the entire set of passenger and parcel requests via an efficient enumeration method; and (3) finding all Pareto-optimal solutions of the bi-objective problem via an $\varepsilon$-constraint method. Not only is the proposed method exact, it also converts the NP-hard problem to a simple vehicle-trip matching problem. More importantly, the total computational time can be compressed to an arbitrary degree via straightforward parallelization. A case study of the Manhattan network demonstrates the solution characteristics of SARP-RL. The results indicate that: (i) Coordinating RV and LV operations to serve passenger and parcel requests (SARP-RL) can simultaneously reduce logistic costs and increase RV profits. (ii) Key factors influencing the performance of SARP-RL include the RV fleet size, spatial distribution of parcel requests, passenger/parcel request ratio, and unit price of transport service, which are quantitatively analyzed to offer managerial insights for real-world implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助99v587采纳,获得10
1秒前
2秒前
呆萌香菇应助明理的以亦采纳,获得10
3秒前
科研通AI5应助HXX采纳,获得30
5秒前
白衣修身发布了新的文献求助10
7秒前
9秒前
虚影发布了新的文献求助100
10秒前
11秒前
12秒前
花花完成签到,获得积分20
12秒前
14秒前
15秒前
花花发布了新的文献求助10
16秒前
16秒前
无奈的萍发布了新的文献求助10
17秒前
yudandan@CJLU发布了新的文献求助10
17秒前
e746700020发布了新的文献求助10
23秒前
24秒前
吉尼太美完成签到,获得积分10
27秒前
风衣拖地给风衣拖地的求助进行了留言
28秒前
慕青应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得30
30秒前
30秒前
30秒前
醒醒发布了新的文献求助10
30秒前
科研通AI5应助杨建航采纳,获得10
31秒前
斯文败类应助lllth采纳,获得10
31秒前
32秒前
安静寄风发布了新的文献求助10
36秒前
清脆的如凡完成签到 ,获得积分10
37秒前
38秒前
40秒前
深情安青应助米田共采纳,获得10
41秒前
42秒前
leslie发布了新的文献求助10
45秒前
45秒前
天天快乐应助醒醒采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780043
求助须知:如何正确求助?哪些是违规求助? 3325422
关于积分的说明 10222930
捐赠科研通 3040579
什么是DOI,文献DOI怎么找? 1668903
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614