Machine learning model based on RCA-PDCA nursing methods and differentiating factors to predict hypotension during cesarean section surgery

PDCA公司 医学 焦虑 入射(几何) 麻醉 并发症 外科 质量管理 运营管理 物理 管理制度 精神科 经济 光学
作者
Xue Yang,Yumei Li,Qiong Wang,Run Li,Ping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108395-108395 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108395
摘要

Intraoperative hypotension during cesarean section has become a serious complication for maternal and fetal healthy. It is commonly encountered by subarachnoid anesthesia. However, currently used control methods have varying degrees of side effects, such as drugs. The Root Cause Analysis (RCA) - Plan, Do, Check, Act (PDCA) is a new model of care that identifies the root causes of problems. The study aimed to demonstrate the usefulness of RCA-PDCA nursing methods in preventing intraoperative hypotension during cesarean section and to predict the occurrence of intraoperative hypotension through a machine learning model. Patients who underwent cesarean section at Traditional Chinese Medicine of Southwest Medical University from January 2023 to December 2023 were retrospectively screened, and the data of their gestational times, age, height, weight, history of allergies, intraoperative vital signs, fetal condition, operative time, fluid out and in, adverse effects, use of vasopressor drugs, anxiety-depression-pain scores, and satisfaction were collected and analyzed. The statistically different features were screened and five machine learning models were used as predictive models to assess the usefulness of the RCA-PDCA model of care. (1) Compared with the general nursing model, the RCA-PDCA nursing model significantly reduces the incidence of intraoperative hypotension and postoperative complications in cesarean delivery, and the patient experience is comfortable and satisfactory. (2) Among the five machine learning models, the RF model has the best predictive performance, and the accuracy of the random forest model in preventing intraoperative hypotension is as high as 90%. Through computer machine learning model analysis, we prove the importance of the RCA-PDCA nursing method in the prevention of intraoperative hypotension during cesarean section, especially the Random Forest model which performed well and promoted the application of artificial intelligence computer learning methods in the field of medical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ygp完成签到 ,获得积分10
1秒前
甜甜玫瑰应助bbb采纳,获得10
1秒前
科研通AI5应助bbb采纳,获得10
1秒前
2秒前
2秒前
充电宝应助李嘉乐采纳,获得10
3秒前
霹雳侠发布了新的文献求助10
3秒前
科研通AI5应助健忘冰露采纳,获得10
4秒前
Jamie发布了新的文献求助10
4秒前
4秒前
于浩洋发布了新的文献求助10
5秒前
赘婿应助麦当劳薯条采纳,获得10
5秒前
5秒前
6秒前
深情依霜完成签到,获得积分10
7秒前
7秒前
轩辕幻香完成签到,获得积分10
7秒前
dochx完成签到,获得积分10
8秒前
8秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
落寞以寒发布了新的文献求助10
11秒前
小马甲应助Jamie采纳,获得10
11秒前
小黄发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
Ava应助ssssss采纳,获得30
14秒前
李大锤完成签到,获得积分10
15秒前
852应助cherish采纳,获得10
16秒前
17秒前
轩辕幻香发布了新的文献求助10
17秒前
椋鸟应助开放灭绝采纳,获得10
20秒前
搜集达人应助诗轩采纳,获得10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635