Improved accuracy in IoT-Based water quality monitoring for aquaculture tanks using low-cost sensors: Asian seabass fish farming

水产养殖 渔业 水质 农业 物联网 环境科学 养鱼业 工程类 生物 生态学 嵌入式系统
作者
Nurshahida Azreen Mohd Jais,Ahmad Fikri Abdullah,Muhamad Saufi Mohd Kassim,Murni Karim,Mohammed Abdulsalam,Nur Atirah Muhadi
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (8): e29022-e29022 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e29022
摘要

Traditional approaches to monitoring water quality in aquaculture tanks present numerous limitations, including the inability to provide real-time data, which can lead to improper feeding practices, reduced productivity, and potential environmental risks. To address these challenges, this study aimed to create an accurate water quality monitoring system for Asian seabass fish farming in aquaculture tanks. This was achieved by enhancing the accuracy of low-cost sensors using simple linear regression and validating the IoT system data with YSI Professional Pro. The system's development and validation were conducted over three months, employing professional devices for accuracy assessment. The accuracy of low-cost sensors was significantly improved through simple linear regression. The results demonstrated impressive accuracy levels ranging from 76% to 97%. The relative error values which range from 0.27% to 4% demonstrate a smaller range compared to the values obtained from the YSI probe during the validation process, signifying the enhanced accuracy and reliability of the IoT sensor by using simple linear regression. The system's enhanced accuracy facilitates convenient and reliable real-time water quality monitoring for aquafarmers. Real-time data visualization was achieved through a microcontroller, Thingspeak, Virtuino application, and ESP 8266 Wi-Fi module, providing comprehensive insights into water quality conditions. Overall, this adaptable tool holds promise for accurate water quality management in diverse aquatic farming practices, ultimately leading to improved yields and sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助aaaa采纳,获得10
刚刚
尹妮妮完成签到,获得积分10
2秒前
DrZheng发布了新的文献求助10
4秒前
5秒前
7秒前
独行者完成签到,获得积分10
7秒前
7秒前
9秒前
Amy完成签到,获得积分10
10秒前
11秒前
aaaa发布了新的文献求助10
11秒前
虾米完成签到,获得积分10
11秒前
青椒炒蛋发布了新的文献求助10
12秒前
14秒前
CipherSage应助JMchiefEditor采纳,获得10
14秒前
科研通AI5应助狂野世立采纳,获得10
15秒前
15秒前
15秒前
15秒前
陶12345完成签到,获得积分10
16秒前
17秒前
18秒前
研友_8DAv0L发布了新的文献求助10
18秒前
科研通AI5应助小煜哥采纳,获得30
19秒前
chunyan_li应助聪慧的凝海采纳,获得10
19秒前
陶12345发布了新的文献求助10
19秒前
Steven发布了新的文献求助30
20秒前
天天完成签到,获得积分10
20秒前
笨笨芯发布了新的文献求助50
22秒前
22秒前
多情道之完成签到 ,获得积分10
24秒前
aaaa完成签到,获得积分20
25秒前
小二郎应助研友_8DAv0L采纳,获得10
25秒前
26秒前
科研通AI5应助狂野世立采纳,获得10
26秒前
27秒前
28秒前
28秒前
紫薯球完成签到,获得积分10
29秒前
小马甲应助怀瑾握瑜采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783103
求助须知:如何正确求助?哪些是违规求助? 3328427
关于积分的说明 10236544
捐赠科研通 3043550
什么是DOI,文献DOI怎么找? 1670558
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119