Design of high performance Cu-Ni-Si alloys via a multiobjective strategy based on machine learning

材料科学 冶金 系统工程 机器学习 计算机科学 工程类
作者
Zhiyang Qin,Hongliang Zhao,Shuya Zhang,Yuheng Fan,Xianglei Dong,Zishuo Lan,Xiaobing Hu,Song Yang,Chunwen Guo
出处
期刊:Materials today communications [Elsevier]
卷期号:39: 108833-108833 被引量:3
标识
DOI:10.1016/j.mtcomm.2024.108833
摘要

Herein, the ultimate tensile strength and electrical conductivity of precipitation-strengthened Cu-Ni-Si alloys were simultaneously improved by utilizing a machine learning-based multiobjective design strategy. The multiobjective design strategy consists of five main steps: creating the initial dataset, generating alloy features, screening key alloy features, modeling and inversely designing, and experimental iteration. Of particular note is the constraint placed on the initial composition-properties dataset, considering the rules governing the addition of Co. This constraint ensures that the dataset adheres to the required specifications. To evaluate the optimized degree of the inverse design composition, a joint expectation improvement function was employed. This function effectively integrates the ultimate tensile strength and electrical conductivity. Through a process of five mutually reinforcing iterations of machine learning and experimentation, the combined property of the designed alloy surpasses the Pareto frontier initially formed by the collected data. Microstructure analysis further confirmed the significant precipitation strengthening effects achieved in the optimized alloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
ICE完成签到,获得积分10
4秒前
核桃发布了新的文献求助30
4秒前
Haoziyu发布了新的文献求助10
5秒前
5秒前
思源应助123采纳,获得10
6秒前
迅速冬瓜完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
小蘑菇应助zyc采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
丘比特应助qq采纳,获得10
11秒前
核桃发布了新的文献求助10
13秒前
glanceofwind完成签到 ,获得积分10
13秒前
酷波er应助三哥采纳,获得30
14秒前
酥酥完成签到 ,获得积分20
14秒前
小马甲应助97采纳,获得30
14秒前
情怀应助Z赵采纳,获得10
15秒前
科研通AI6应助oni采纳,获得10
15秒前
16秒前
2E9发布了新的文献求助10
16秒前
gghh完成签到 ,获得积分10
17秒前
酷波er应助罗伯特骚塞采纳,获得10
19秒前
19秒前
19秒前
21秒前
无花果应助淡定访琴采纳,获得10
22秒前
22秒前
sunqian完成签到 ,获得积分10
23秒前
dal已送达发布了新的文献求助10
23秒前
23秒前
23秒前
Hello应助Haoziyu采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520406
求助须知:如何正确求助?哪些是违规求助? 4612216
关于积分的说明 14532090
捐赠科研通 4549719
什么是DOI,文献DOI怎么找? 2493116
邀请新用户注册赠送积分活动 1474340
关于科研通互助平台的介绍 1445964