Identification of MACC1 as a potential biomarker for pulmonary arterial hypertension based on bioinformatics and machine learning

生物标志物 鉴定(生物学) 肺动脉高压 医学 计算机科学 慢性血栓栓塞性肺高压 机器学习 生物信息学 人工智能 心脏病学 计算生物学 化学 生物 生物化学 植物
作者
Xinyi Zhou,Benhui Liang,Wenchao Lin,Lihuang Zha
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108372-108372 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108372
摘要

Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by abnormal early activation of pulmonary arterial smooth muscle cells (PASMCs), yet the underlying mechanisms remain to be elucidated. Normal and PAH gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database and analyzed using gene set enrichment analysis (GSEA) to uncover the underlying mechanisms. Weighted gene co-expression network analysis (WGCNA) and machine learning methods were deployed to further filter hub genes. A number of immune infiltration analysis methods were applied to explore the immune landscape of PAH. Enzyme-linked immunosorbent assay (ELISA) was employed to compare MACC1 levels between PAH and normal subjects. The important role of MACC1 in the progression of PAH was verified through Western blot and real-time qPCR, among others. 39 up-regulated and 7 down-regulated genes were identified by 'limma' and 'RRA' packages. WGCNA and machine learning further narrowed down the list to 4 hub genes, with MACC1 showing strong diagnostic capacity. In vivo and in vitro experiments revealed that MACC1 was highsly associated with malignant features of PASMCs in PAH. These findings suggest that targeting MACC1 may offer a promising therapeutic strategy for treating PAH, and further clinical studies are warranted to evaluate its efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
领导范儿应助小高采纳,获得10
5秒前
宁为树发布了新的文献求助10
9秒前
10秒前
ffchen111完成签到 ,获得积分10
11秒前
英俊的胜完成签到,获得积分10
12秒前
钢铁加鲁鲁完成签到,获得积分0
13秒前
Owen完成签到,获得积分10
15秒前
刘小明发布了新的文献求助10
16秒前
Owen应助古月采纳,获得10
19秒前
阿包完成签到 ,获得积分10
19秒前
科研通AI5应助晓王采纳,获得10
20秒前
21秒前
22秒前
CodeCraft应助米子采纳,获得10
22秒前
25秒前
jianhua发布了新的文献求助10
26秒前
李健应助古月采纳,获得10
28秒前
28秒前
青橘短衫完成签到,获得积分10
31秒前
squrreil完成签到,获得积分10
32秒前
34秒前
34秒前
34秒前
34秒前
36秒前
36秒前
JamesPei应助秋子采纳,获得10
36秒前
刀锋发布了新的文献求助10
37秒前
晓王完成签到,获得积分10
38秒前
38秒前
39秒前
wly1111发布了新的文献求助10
39秒前
40秒前
41秒前
zsj发布了新的文献求助10
42秒前
晓王发布了新的文献求助10
42秒前
OrthoLee完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339