Deep learning with visual explanations for leakage defect segmentation of metro shield tunnel

失败 可解释性 深度学习 分割 泄漏(经济) 计算机科学 人工智能 编码器 卷积神经网络 涡轮 机器学习 模式识别(心理学) 工程类 经济 宏观经济学 并行计算 操作系统 汽车工程
作者
Shi Jin Feng,Yong Feng,Xiaolei Zhang,Yi Han Chen
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:136: 105107-105107 被引量:9
标识
DOI:10.1016/j.tust.2023.105107
摘要

Tunnel lining leakage is a crucial indicator of metro shield tunnels’ safety status. For automatic, rapid and accurate detection of leakages, this paper proposes a deep learning-based approach with enhanced efficiency, accuracy and interpretability. First, a total of forty U-shaped semantic segmentation models are developed by coupling UNet and UNet++ with six types of classification convolutional neural networks. Then, multiple evaluation indices, i.e., accuracy, computational complexity, and model complexity are introduced to determine the optimal leakage detection models which achieve a balance between efficiency and accuracy. Finally, Gradient-weighted Class Activation Mapping Plus Plus (Grad-CAM++) is leveraged to understand the mechanisms behind the ‘black-box’ of deep learning-based models. The experimental results show that UNet with encoder EfficientNetB6 is the most applicable model amongst UNet-based models, which gets 84.97 % intersection over union (IoU), requires 115.77 billion floating-point operations (FLOPs), and has 42.49 million parameters. UNet++ with encoder EfficientNetB5 achieves 87.70 % IoU, needs 327.26 billion FLOPs, and has only 30.86 million parameters, thereby becoming the best-performing model among UNet++-based models. The quantitative comparison with existing dominant approaches also proves that our proposed models have high accuracy and low time and space complexities. Furthermore, based on the visual explanations, it concludes that deepening and widening the encoder networks can boost models’ performance, and the two feature fusion methods, namely simple skip connection and dense skip connections, play a crucial role in achieving precise tunnel leakage segmentation. The developed algorithms of this study provide a pixel-wise segmentation basis for fast and accurate quantitative assessment of metro tunnel health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助kk采纳,获得10
刚刚
领导范儿应助Vivian采纳,获得10
2秒前
YD发布了新的文献求助10
2秒前
3秒前
3秒前
Lin.隽完成签到,获得积分10
4秒前
无情灯泡完成签到,获得积分10
5秒前
瑶瑶完成签到,获得积分20
6秒前
包容若风完成签到 ,获得积分10
6秒前
深情无血完成签到,获得积分10
6秒前
科研婷发布了新的文献求助100
7秒前
8秒前
8秒前
monster0101发布了新的文献求助10
8秒前
凡高爱自由完成签到,获得积分10
10秒前
11秒前
宋小雅完成签到,获得积分10
11秒前
秀丽灵槐完成签到,获得积分10
11秒前
12秒前
mafukairi发布了新的文献求助10
12秒前
白天亮发布了新的文献求助10
12秒前
dingm2发布了新的文献求助10
17秒前
着急的又柔给着急的又柔的求助进行了留言
18秒前
赵文若完成签到,获得积分10
18秒前
19秒前
21秒前
Sara完成签到,获得积分10
21秒前
动听松思完成签到,获得积分20
24秒前
CZ_Xsx发布了新的文献求助20
24秒前
24秒前
25秒前
山楂发布了新的文献求助10
25秒前
zhihan发布了新的文献求助30
26秒前
张文淇发布了新的文献求助20
26秒前
Jewel_719发布了新的文献求助10
27秒前
今后应助mafukairi采纳,获得10
29秒前
Jhure完成签到,获得积分10
31秒前
PhishCellar完成签到 ,获得积分10
33秒前
34秒前
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818608
求助须知:如何正确求助?哪些是违规求助? 3361624
关于积分的说明 10413632
捐赠科研通 3079880
什么是DOI,文献DOI怎么找? 1693398
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248