已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning with visual explanations for leakage defect segmentation of metro shield tunnel

失败 可解释性 深度学习 分割 泄漏(经济) 计算机科学 人工智能 编码器 卷积神经网络 涡轮 机器学习 模式识别(心理学) 工程类 经济 宏观经济学 并行计算 操作系统 汽车工程
作者
Shi Jin Feng,Yong Feng,Xiaolei Zhang,Yi Han Chen
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:136: 105107-105107 被引量:9
标识
DOI:10.1016/j.tust.2023.105107
摘要

Tunnel lining leakage is a crucial indicator of metro shield tunnels’ safety status. For automatic, rapid and accurate detection of leakages, this paper proposes a deep learning-based approach with enhanced efficiency, accuracy and interpretability. First, a total of forty U-shaped semantic segmentation models are developed by coupling UNet and UNet++ with six types of classification convolutional neural networks. Then, multiple evaluation indices, i.e., accuracy, computational complexity, and model complexity are introduced to determine the optimal leakage detection models which achieve a balance between efficiency and accuracy. Finally, Gradient-weighted Class Activation Mapping Plus Plus (Grad-CAM++) is leveraged to understand the mechanisms behind the ‘black-box’ of deep learning-based models. The experimental results show that UNet with encoder EfficientNetB6 is the most applicable model amongst UNet-based models, which gets 84.97 % intersection over union (IoU), requires 115.77 billion floating-point operations (FLOPs), and has 42.49 million parameters. UNet++ with encoder EfficientNetB5 achieves 87.70 % IoU, needs 327.26 billion FLOPs, and has only 30.86 million parameters, thereby becoming the best-performing model among UNet++-based models. The quantitative comparison with existing dominant approaches also proves that our proposed models have high accuracy and low time and space complexities. Furthermore, based on the visual explanations, it concludes that deepening and widening the encoder networks can boost models’ performance, and the two feature fusion methods, namely simple skip connection and dense skip connections, play a crucial role in achieving precise tunnel leakage segmentation. The developed algorithms of this study provide a pixel-wise segmentation basis for fast and accurate quantitative assessment of metro tunnel health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ru完成签到 ,获得积分10
刚刚
Yingkun_Xu完成签到,获得积分10
1秒前
健忘菠萝完成签到 ,获得积分10
1秒前
Gideon完成签到,获得积分10
2秒前
shuhaha完成签到,获得积分10
2秒前
锅锅锅发布了新的文献求助10
2秒前
4秒前
4秒前
algain完成签到 ,获得积分10
7秒前
7秒前
8秒前
Komorebi完成签到 ,获得积分10
8秒前
平常安雁完成签到 ,获得积分10
8秒前
杨武天一发布了新的文献求助10
10秒前
10秒前
13秒前
Cauchy发布了新的文献求助10
15秒前
luis完成签到 ,获得积分10
15秒前
15秒前
15秒前
17秒前
18秒前
达雨完成签到,获得积分10
19秒前
周周完成签到,获得积分10
19秒前
大圆土豆完成签到 ,获得积分10
20秒前
沉默访冬发布了新的文献求助10
20秒前
机灵哈密瓜完成签到,获得积分10
21秒前
大妙妙完成签到 ,获得积分10
21秒前
21秒前
忘桑榆完成签到,获得积分10
21秒前
22秒前
22秒前
桐桐应助EDEN采纳,获得10
24秒前
科目三应助小包子采纳,获得10
24秒前
学术妲己完成签到,获得积分20
25秒前
锥形瓶应助shinn采纳,获得10
25秒前
25秒前
苏澄发布了新的文献求助10
26秒前
浮游应助yaling采纳,获得10
26秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401154
求助须知:如何正确求助?哪些是违规求助? 4520145
关于积分的说明 14078818
捐赠科研通 4433229
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426180
关于科研通互助平台的介绍 1404792