A Dual-View Style Mixing Network for Unsupervised Cross-Domain Fault Diagnosis with Imbalanced Data

对偶(语法数字) 风格(视觉艺术) 混合(物理) 领域(数学分析) 人工智能 计算机科学 数据挖掘 机器学习 模式识别(心理学) 地理 数学 物理 哲学 量子力学 数学分析 语言学 考古
作者
Zixu Chen,Wennian Yu,Liming Wang,Xiaoxi Ding,Wenbin Huang,Yimin Shao
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4386932
摘要

The remarkable progress of cross-domain fault diagnosis is based on the balanced distribution of different health conditions in a supervised manner. However, in engineering scenarios, the monitored fault data is scarce and imbalanced; variable working conditions and high labor costs make it luxurious to obtain labels; there is a huge gap between the current domain adaptation methods based on class balance data and real industrial applications. Therefore, a Dual-View Style Mixing Network (DVSMN) for dealing with unsupervised cross-domain fault diagnosis with imbalanced data is proposed. Two parallel graph convolution frameworks are first constructed to extract the fault features. Then, the style mixing module together with the domain style loss is proposed for obtaining generalized and domain-invariant representations without augmenting any synthetic samples. An intermediate domain can also be initialized to increase the original cross-domain overlap to facilitate the domain adaptation. Finally, a dual-view module that consists of a binary classifier and a multi-class classifier is constructed to realize sample-level dynamic re-weighting and accurate fault classification of imbalanced data. As such, the DVSMN can learn the generalized and domain-invariant features from the imbalanced data without any generative modules for sample re-balancing as well as target labels. Cross-domain experiments with different imbalance ratios are carried out via two datasets to validate the performance of the proposed method. Comparative studies with state-of-the-art methods and ablation experiments have demonstrated the effectiveness and superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kx完成签到,获得积分10
刚刚
1秒前
星辰大海应助zhouzhoufighting采纳,获得10
1秒前
草上飞发布了新的文献求助200
1秒前
xien发布了新的文献求助10
2秒前
2秒前
Orange应助Ted采纳,获得10
3秒前
韩凌完成签到,获得积分10
4秒前
无私语儿发布了新的文献求助10
4秒前
4秒前
一条裸游的鱼完成签到,获得积分10
5秒前
ZhouYW应助小熊采纳,获得10
5秒前
薯条狂热爱好者完成签到 ,获得积分10
5秒前
satori完成签到,获得积分10
7秒前
7秒前
7秒前
ding应助无私语儿采纳,获得10
7秒前
亻圭发布了新的文献求助30
8秒前
MrFamous完成签到,获得积分10
8秒前
佟语雪完成签到,获得积分10
8秒前
yolee完成签到,获得积分10
8秒前
luf完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
在九月发布了新的文献求助10
11秒前
微笑的觅夏完成签到 ,获得积分10
11秒前
xien完成签到,获得积分10
11秒前
11秒前
晴天完成签到,获得积分10
11秒前
老迟到的秋完成签到,获得积分10
11秒前
12秒前
威威发布了新的文献求助10
12秒前
12秒前
丫丫完成签到,获得积分10
13秒前
传奇3应助zhang采纳,获得10
13秒前
14秒前
六日完成签到,获得积分10
14秒前
土豆条子发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793765
求助须知:如何正确求助?哪些是违规求助? 3338643
关于积分的说明 10290816
捐赠科研通 3055026
什么是DOI,文献DOI怎么找? 1676315
邀请新用户注册赠送积分活动 804358
科研通“疑难数据库(出版商)”最低求助积分说明 761836