AI-based clinical assessment of optic nerve head robustness superseding biomechanical testing

随机森林 视神经 人工智能 光学相干层析成像 医学 卷积神经网络 稳健性(进化) 人口 视盘 青光眼 计算机科学 机器学习 眼科 环境卫生 生物化学 化学 基因
作者
Fabian A. Braeu,Thanadet Chuangsuwanich,Tin A. Tun,Shamira Perera,Rahat Husain,Alexandre H. Thiéry,Tin Aung,George Barbastathis,Michaël J. A. Girard
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:: bjo-322374 被引量:6
标识
DOI:10.1136/bjo-2022-322374
摘要

Background/aims To use artificial intelligence (AI) to: (1) exploit biomechanical knowledge of the optic nerve head (ONH) from a relatively large population; (2) assess ONH robustness (ie, sensitivity of the ONH to changes in intraocular pressure (IOP)) from a single optical coherence tomography (OCT) volume scan of the ONH without the need for biomechanical testing and (3) identify what critical three-dimensional (3D) structural features dictate ONH robustness. Methods 316 subjects had their ONHs imaged with OCT before and after acute IOP elevation through ophthalmo-dynamometry. IOP-induced lamina cribrosa (LC) deformations were then mapped in 3D and used to classify ONHs. Those with an average effective LC strain superior to 4% were considered fragile, while those with a strain inferior to 4% robust. Learning from these data, we compared three AI algorithms to predict ONH robustness strictly from a baseline (undeformed) OCT volume: (1) a random forest classifier; (2) an autoencoder and (3) a dynamic graph convolutional neural network (DGCNN). The latter algorithm also allowed us to identify what critical 3D structural features make a given ONH robust. Results All three methods were able to predict ONH robustness from a single OCT volume scan alone and without the need to perform biomechanical testing. The DGCNN (area under the curve (AUC): 0.76±0.08) outperformed the autoencoder (AUC: 0.72±0.09) and the random forest classifier (AUC: 0.69±0.05). Interestingly, to assess ONH robustness, the DGCNN mainly used information from the scleral canal and the LC insertion sites. Conclusions We propose an AI-driven approach that can assess the robustness of a given ONH solely from a single OCT volume scan of the ONH, and without the need to perform biomechanical testing. Longitudinal studies should establish whether ONH robustness could help us identify fast visual field loss progressors. Precis Using geometric deep learning, we can assess optic nerve head robustness (ie, sensitivity to a change in IOP) from a standard OCT scan that might help to identify fast visual field loss progressors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yrp完成签到 ,获得积分10
刚刚
1秒前
陈发发发布了新的文献求助10
1秒前
勤奋完成签到,获得积分0
1秒前
虚拟的纸鹤完成签到 ,获得积分10
2秒前
2秒前
3秒前
Avie完成签到 ,获得积分10
4秒前
4秒前
4秒前
潇潇发布了新的文献求助10
5秒前
李健应助碧蓝鸡翅采纳,获得10
5秒前
6秒前
6秒前
7秒前
YY发布了新的文献求助30
7秒前
7秒前
CZJ发布了新的文献求助10
7秒前
7秒前
dingyn-2完成签到,获得积分10
8秒前
8秒前
minhdh完成签到,获得积分10
8秒前
姜同心发布了新的文献求助30
9秒前
LULU完成签到,获得积分10
11秒前
岸边渔客发布了新的文献求助10
12秒前
123发布了新的文献求助30
12秒前
李爱国应助双儿采纳,获得10
12秒前
自觉南风发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
zhou完成签到,获得积分10
14秒前
CZJ完成签到,获得积分10
14秒前
15秒前
科研捣蛋鬼完成签到,获得积分10
15秒前
Hello应助姜同心采纳,获得10
18秒前
19秒前
boyal发布了新的文献求助30
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726319
求助须知:如何正确求助?哪些是违规求助? 4083559
关于积分的说明 12629507
捐赠科研通 3789976
什么是DOI,文献DOI怎么找? 2093033
邀请新用户注册赠送积分活动 1118779
科研通“疑难数据库(出版商)”最低求助积分说明 995251