膜
热扩散率
动力学蒙特卡罗方法
共聚物
多尺度建模
化学物理
溶剂化
统计物理学
材料科学
蒙特卡罗方法
格点模型(金融)
扩散
聚合物
热力学
化学
溶剂
计算化学
物理
复合材料
有机化学
统计
生物化学
数学
作者
Cooper, Anthony J.,Howard, Michael P.,Kadulkar, Sanket,Zhao, David,Delaney, Kris T.,Ganesan, Venkat,Truskett, Thomas M.,Fredrickson, Glenn H.
摘要
We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.
科研通智能强力驱动
Strongly Powered by AbleSci AI