Vision Transformers, Ensemble Model, and Transfer Learning Leveraging Explainable AI for Brain Tumor Detection and Classification

人工智能 计算机科学 磁共振成像 学习迁移 符号 脑瘤 自动定理证明 机器学习 自然语言处理 数学 算法 医学 病理 放射科 算术
作者
Shahriar Hossain,Amitabha Chakrabarty,Thippa Reddy Gadekallu,Mamoun Alazab,Md. Jalil Piran
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1261-1272 被引量:88
标识
DOI:10.1109/jbhi.2023.3266614
摘要

The abnormal growth of malignant or nonmalignant tissues in the brain causes long-term damage to the brain. Magnetic resonance imaging (MRI) is one of the most common methods of detecting brain tumors. To determine whether a patient has a brain tumor, MRI filters are physically examined by experts after they are received. It is possible for MRI images examined by different specialists to produce inconsistent results since professionals formulate evaluations differently. Furthermore, merely identifying a tumor is not enough. To begin treatment as soon as possible, it is equally important to determine the type of tumor the patient has. In this paper, we consider the multiclass classification of brain tumors since significant work has been done on binary classification. In order to detect tumors faster, more unbiased, and reliably, we investigated the performance of several deep learning (DL) architectures including Visual Geometry Group 16 (VGG16), InceptionV3, VGG19, ResNet50, InceptionResNetV2, and Xception. Following this, we propose a transfer learning(TL) based multiclass classification model called IVX16 based on the three best-performing TL models. We use a dataset consisting of a total of 3264 images. Through extensive experiments, we achieve peak accuracy of $95.11\%$ , $93.88\%$ , $94.19\%$ , $93.88\%$ , $93.58\%$ , $94.5\%$ , and $96.94\%$ for VGG16, InceptionV3, VGG19, ResNet50, InceptionResNetV2, Xception, and IVX16, respectively. Furthermore, we use Explainable AI to evaluate the performance and validity of each DL model and implement recently introduced Vison Transformer (ViT) models and compare their obtained output with the TL and ensemble model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助犹豫曲奇采纳,获得10
1秒前
dede发布了新的文献求助10
1秒前
2秒前
2秒前
罗大壮发布了新的文献求助10
2秒前
JIE发布了新的文献求助10
3秒前
焦糖栗子怪完成签到,获得积分10
3秒前
4秒前
浩哥要strong完成签到,获得积分20
4秒前
4秒前
FashionBoy应助rainlqy采纳,获得10
4秒前
传奇3应助重要尔珍采纳,获得20
5秒前
6秒前
6秒前
阿巴阿巴完成签到,获得积分10
6秒前
大模型应助yankai采纳,获得10
8秒前
liuj完成签到,获得积分10
8秒前
arabidopsis应助浩哥要strong采纳,获得10
8秒前
LXL完成签到,获得积分10
9秒前
gsh发布了新的文献求助10
9秒前
sujustin333发布了新的文献求助10
11秒前
克林沙星完成签到,获得积分10
11秒前
糕糕完成签到,获得积分10
12秒前
黄黄发布了新的文献求助20
12秒前
AntonioJ发布了新的文献求助10
13秒前
hh完成签到,获得积分10
13秒前
Orange应助Faceman采纳,获得10
15秒前
16秒前
17秒前
Jasper应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
yznfly应助科研通管家采纳,获得50
18秒前
匆匆应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970008
求助须知:如何正确求助?哪些是违规求助? 3514711
关于积分的说明 11175563
捐赠科研通 3250077
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804931