Vision Transformers, Ensemble Model, and Transfer Learning Leveraging Explainable AI for Brain Tumor Detection and Classification

人工智能 计算机科学 磁共振成像 学习迁移 符号 脑瘤 自动定理证明 机器学习 自然语言处理 数学 算法 医学 病理 放射科 算术
作者
Shahriar Hossain,Amitabha Chakrabarty,Thippa Reddy Gadekallu,Mamoun Alazab,Md. Jalil Piran
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1261-1272 被引量:88
标识
DOI:10.1109/jbhi.2023.3266614
摘要

The abnormal growth of malignant or nonmalignant tissues in the brain causes long-term damage to the brain. Magnetic resonance imaging (MRI) is one of the most common methods of detecting brain tumors. To determine whether a patient has a brain tumor, MRI filters are physically examined by experts after they are received. It is possible for MRI images examined by different specialists to produce inconsistent results since professionals formulate evaluations differently. Furthermore, merely identifying a tumor is not enough. To begin treatment as soon as possible, it is equally important to determine the type of tumor the patient has. In this paper, we consider the multiclass classification of brain tumors since significant work has been done on binary classification. In order to detect tumors faster, more unbiased, and reliably, we investigated the performance of several deep learning (DL) architectures including Visual Geometry Group 16 (VGG16), InceptionV3, VGG19, ResNet50, InceptionResNetV2, and Xception. Following this, we propose a transfer learning(TL) based multiclass classification model called IVX16 based on the three best-performing TL models. We use a dataset consisting of a total of 3264 images. Through extensive experiments, we achieve peak accuracy of $95.11\%$ , $93.88\%$ , $94.19\%$ , $93.88\%$ , $93.58\%$ , $94.5\%$ , and $96.94\%$ for VGG16, InceptionV3, VGG19, ResNet50, InceptionResNetV2, Xception, and IVX16, respectively. Furthermore, we use Explainable AI to evaluate the performance and validity of each DL model and implement recently introduced Vison Transformer (ViT) models and compare their obtained output with the TL and ensemble model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助小羊采纳,获得10
1秒前
1秒前
东方高靖发布了新的文献求助10
1秒前
妮妮发布了新的文献求助10
2秒前
椰汁发布了新的文献求助10
3秒前
在水一方应助清清佑佑采纳,获得10
3秒前
wyblobin发布了新的文献求助10
3秒前
Mmxn驳回了Akim应助
4秒前
焦糖发布了新的文献求助10
4秒前
五氧化二磷完成签到,获得积分10
5秒前
5秒前
Ava应助太叔静竹采纳,获得10
5秒前
6秒前
7秒前
7秒前
8秒前
9秒前
爆米花应助ccm采纳,获得10
10秒前
火的信仰发布了新的文献求助80
11秒前
11秒前
小二郎应助研究牲采纳,获得10
11秒前
晓晓完成签到,获得积分10
11秒前
11秒前
11秒前
苏大大完成签到,获得积分10
11秒前
何YI完成签到,获得积分10
12秒前
12秒前
lsh完成签到,获得积分10
12秒前
13秒前
义气凡霜发布了新的文献求助10
13秒前
肆樂柒完成签到,获得积分10
13秒前
hu完成签到,获得积分10
14秒前
14秒前
16秒前
葛蓉发布了新的文献求助30
16秒前
嘻嘻哈哈完成签到 ,获得积分10
16秒前
孙行行发布了新的文献求助10
16秒前
梦里格斗家完成签到,获得积分10
16秒前
17秒前
yinying发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5165143
求助须知:如何正确求助?哪些是违规求助? 4357538
关于积分的说明 13567398
捐赠科研通 4203399
什么是DOI,文献DOI怎么找? 2305198
邀请新用户注册赠送积分活动 1305131
关于科研通互助平台的介绍 1251539