Vision Transformers, Ensemble Model, and Transfer Learning Leveraging Explainable AI for Brain Tumor Detection and Classification

人工智能 计算机科学 磁共振成像 学习迁移 符号 脑瘤 自动定理证明 机器学习 自然语言处理 数学 算法 医学 病理 放射科 算术
作者
Shahriar Hossain,Amitabha Chakrabarty,Thippa Reddy Gadekallu,Mamoun Alazab,Md. Jalil Piran
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1261-1272 被引量:79
标识
DOI:10.1109/jbhi.2023.3266614
摘要

The abnormal growth of malignant or nonmalignant tissues in the brain causes long-term damage to the brain. Magnetic resonance imaging (MRI) is one of the most common methods of detecting brain tumors. To determine whether a patient has a brain tumor, MRI filters are physically examined by experts after they are received. It is possible for MRI images examined by different specialists to produce inconsistent results since professionals formulate evaluations differently. Furthermore, merely identifying a tumor is not enough. To begin treatment as soon as possible, it is equally important to determine the type of tumor the patient has. In this paper, we consider the multiclass classification of brain tumors since significant work has been done on binary classification. In order to detect tumors faster, more unbiased, and reliably, we investigated the performance of several deep learning (DL) architectures including Visual Geometry Group 16 (VGG16), InceptionV3, VGG19, ResNet50, InceptionResNetV2, and Xception. Following this, we propose a transfer learning(TL) based multiclass classification model called IVX16 based on the three best-performing TL models. We use a dataset consisting of a total of 3264 images. Through extensive experiments, we achieve peak accuracy of $95.11\%$ , $93.88\%$ , $94.19\%$ , $93.88\%$ , $93.58\%$ , $94.5\%$ , and $96.94\%$ for VGG16, InceptionV3, VGG19, ResNet50, InceptionResNetV2, Xception, and IVX16, respectively. Furthermore, we use Explainable AI to evaluate the performance and validity of each DL model and implement recently introduced Vison Transformer (ViT) models and compare their obtained output with the TL and ensemble model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
ALY12345发布了新的文献求助10
5秒前
ys完成签到,获得积分10
7秒前
懒羊羊完成签到,获得积分10
11秒前
小蘑菇应助ALY12345采纳,获得10
13秒前
lwl666完成签到,获得积分10
18秒前
19秒前
顺心夜阑完成签到,获得积分10
20秒前
20秒前
hujie完成签到,获得积分10
24秒前
xxx7749发布了新的文献求助10
25秒前
科研通AI5应助阿丹采纳,获得10
25秒前
科目三应助xxx7749采纳,获得10
29秒前
顺心夜阑发布了新的文献求助10
33秒前
石开222完成签到,获得积分10
35秒前
38秒前
42秒前
高大的秋白完成签到,获得积分20
43秒前
XL发布了新的文献求助10
44秒前
Hero完成签到,获得积分10
46秒前
47秒前
LuoYR@SZU完成签到,获得积分10
51秒前
爱吃蛋饼的zach完成签到 ,获得积分10
52秒前
zys完成签到,获得积分10
52秒前
56秒前
断章完成签到,获得积分10
56秒前
专注一块砖头完成签到,获得积分10
57秒前
57秒前
xiaoyiyaxin完成签到 ,获得积分10
59秒前
瘪良科研完成签到,获得积分10
1分钟前
zrs发布了新的文献求助10
1分钟前
1分钟前
独特谷丝发布了新的文献求助10
1分钟前
orixero应助yukinade采纳,获得10
1分钟前
帅气鹭洋完成签到,获得积分20
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777986
求助须知:如何正确求助?哪些是违规求助? 3323635
关于积分的说明 10215128
捐赠科研通 3038833
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339