Vision Transformers, Ensemble Model, and Transfer Learning Leveraging Explainable AI for Brain Tumor Detection and Classification

人工智能 计算机科学 磁共振成像 学习迁移 符号 脑瘤 自动定理证明 机器学习 自然语言处理 数学 算法 医学 病理 放射科 算术
作者
Shahriar Hossain,Amitabha Chakrabarty,Thippa Reddy Gadekallu,Mamoun Alazab,Md. Jalil Piran
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1261-1272 被引量:163
标识
DOI:10.1109/jbhi.2023.3266614
摘要

The abnormal growth of malignant or nonmalignant tissues in the brain causes long-term damage to the brain. Magnetic resonance imaging (MRI) is one of the most common methods of detecting brain tumors. To determine whether a patient has a brain tumor, MRI filters are physically examined by experts after they are received. It is possible for MRI images examined by different specialists to produce inconsistent results since professionals formulate evaluations differently. Furthermore, merely identifying a tumor is not enough. To begin treatment as soon as possible, it is equally important to determine the type of tumor the patient has. In this paper, we consider the multiclass classification of brain tumors since significant work has been done on binary classification. In order to detect tumors faster, more unbiased, and reliably, we investigated the performance of several deep learning (DL) architectures including Visual Geometry Group 16 (VGG16), InceptionV3, VGG19, ResNet50, InceptionResNetV2, and Xception. Following this, we propose a transfer learning(TL) based multiclass classification model called IVX16 based on the three best-performing TL models. We use a dataset consisting of a total of 3264 images. Through extensive experiments, we achieve peak accuracy of 95.11%, 93.88%, 94.19%, 93.88%, 93.58%, 94.5%, and 96.94% for VGG16, InceptionV3, VGG19, ResNet50, InceptionResNetV2, Xception, and IVX16, respectively. Furthermore, we use Explainable AI to evaluate the performance and validity of each DL model and implement recently introduced Vison Transformer (ViT) models and compare their obtained output with the TL and ensemble model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的怜南完成签到,获得积分10
刚刚
zh完成签到 ,获得积分10
1秒前
科目三应助雪碧采纳,获得10
2秒前
2秒前
kingwill发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
2秒前
zcccc完成签到,获得积分10
3秒前
3秒前
3秒前
浮游应助Liu采纳,获得10
3秒前
浮游应助Liu采纳,获得10
3秒前
顾矜应助Liu采纳,获得10
4秒前
JamesPei应助Liu采纳,获得10
4秒前
4秒前
4秒前
4秒前
封亦白发布了新的文献求助10
4秒前
5秒前
5秒前
正直蓝天完成签到,获得积分10
5秒前
花阳发布了新的文献求助10
5秒前
5秒前
HLS发布了新的文献求助10
5秒前
zh关注了科研通微信公众号
5秒前
情怀应助欣喜的问夏采纳,获得10
6秒前
斯文败类应助嘿嘿采纳,获得10
6秒前
zlx发布了新的文献求助10
6秒前
面壁思过发布了新的文献求助10
6秒前
7秒前
7秒前
曾真真幸运完成签到,获得积分10
8秒前
yuaasusanaann发布了新的文献求助10
8秒前
8秒前
SYX发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
小米发布了新的文献求助10
9秒前
9秒前
pbqyun完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700932
求助须知:如何正确求助?哪些是违规求助? 5141378
关于积分的说明 15232242
捐赠科研通 4856069
什么是DOI,文献DOI怎么找? 2605609
邀请新用户注册赠送积分活动 1556949
关于科研通互助平台的介绍 1515058